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Preface

The purpose of this study was to develop a new

method for teaching combinatorics, given the fact that

previous presentations leave a great deal to be desired

pedagogically. Most combinatorial textbooks use very dif-

ficult languages and notations, do not place enough empha-

sis on visualization and fail to show the relationships

between general and particular concepts. Students, under

these circumstances, usually learn combinatorics in a pure

rote manner, finding no motivational reasons for this

discipline.

A conceptual map was proposed in order to facili-

tate the teaching of this subject in a more graphical form,

showing the hierarchical interrelations between super-

ordinate and the subordinate concepts. Several examples

of how such concepts can be visually taught have been

created and presented, so that future research can investi-

gate ways that computer graphics and expert systems can be

used to facilitate the accession and employment of the con-

ceptual map.

Along the process of this investigation I received

constant support from my thesis advisor, Professor Daniel

Reynolds, to whom I express in public my deep appreciation,
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admiration and recognition. I also thank his wife, Phyllis

Reynolds, for her extremely well done typing, that is not

typing, but a piece of art. Finally, a big hug for my

children Raquel, Pedro, Natalia and Patricia for their

patient suffering of the bad moods of this part-time
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Abstract

The purpose of this study was to construct a new

methodology for teaching combinatorics based on Doctor

Ausubel's theory about meaningful learning. The key idea

in Ausubel's theory is that if learning has to be meaning-

ful, then the learner has to have subsuming or anchoring

concepts in his cognitive structure.

Combinatorics has typically been one of those sub-

jects the students have more difficulty in understanding.

This phenomenon happens because previous presentations of

combinatorics leave a great deal to be desired peda-

gogically, and do not place enough emphasis on visualiza-

tion. As a result, students use to learn course materials

in a rote manner, and find little motivation for such

learning activities.

A prescription has been found to remedy such

pathology. A conceptual map, rather than a typically

organized hierarchy of concepts, has been developed. The

conceptual map interrelates the main and subordinate con-

cepts in a cyclical manner, in a repetitive way, in a

gradual and smooth progress, to enable the reader to

assimilate ideas meaningfully.

vlii

.,. .. . .. .. . - .. , .. .. -. . . . ... ,. , , , . . -.- , . - - , z . . , ,
. . .* . - - . . " % . , ' . , . -, ", -.. . " ." .'. . ." t .- % -. - . .. . - ° . ,.- . - ' -j ." . .j • "- - % " -. -. "



THE CONSTRUCTION OF A PEDAGOGY TO PROMOTE MEANINGFUL

LEARNING OF STRATEGIES AND TACTICS FOR SOLVING

PROBLEMS OF ELEMENTARY COMBINATORICS

I. Introduction

General Issue

Combinatorial analysis is an old branch of mathe-

matical science which has been treated by many authors.

Nevertheless, previous presentations leave a great deal to

be desired pedagogically, and do not place enough emphasis

on visualization. on the other hand, there is a lack of

available course material and/or strategies to help the

neophyte acquire an adequate combinatorial concept base to

study more advanced notions of probability and statistics.

These circumstances and needs are the motivation for the

research study.

Problem Statemer t

The introduction of combinatorics in elementary

statistics textbooks typically focuses on the memorization

and subsequent regurgitation of nine key formulae that can

be used to compute the total number of configurations of

elements that meet certain criteria:

1. The number of variations, where order of the

elements is relevant, and
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* 2. The number of combinations, where order is

irrelevant.

4 Because evaluation instruments and grading criteria

associated with such learning activities normally reward

students for rote learning, they promote a pedagogy that

reduces, and sometimes eliminates, any opportunity for

meaningful learning of course materials. As a result, con-

cepts associated with counting problems appear dry and

irrelevant. Management students, in particular, find little

motivation for such learning activities and, at least dur-

ing the period of studying such problems, even less utility.

The motivational vacuum fostered by such a pedagogy

leaves facilitating the construction of an adequate comn-

binatoric framework to serendipity, and encourages most

students to begin their study of applied statistics without

the necessary cognitive structures with which to assimilate,

reconcile and integrate the concepts of probability theory.

Without such structures, students, despite long hours of

study, find it difficult to cultivate the skills needed to

deal with the complexities of scientific research.

A pedagogy needs to be constructed that promotes

a thorough diagnosis and an adequate supplementation of any

shortfall in concepts associated with the central problems of

combinatorics and management.

2
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Research Objectives

The objectives of the research are as follows:

1. A conceptual mapping will be proposed rather

than a topically organized hierarchy of concepts, that will

facilitate the teaching of this subject, and allow con-

crete presentations of applications within the context

provided by the conceptual map.

2. Several examples of how such concepts can be

visually taught will be created and presented, so that

future research can focus on their implementation on com-

puter software. Combinatorial problems in one-, two-, and

three-dimensional space will be introduced, but not

exhausted, leaving an attractive open field for future

investigations.

Such a renaissance in teaching strategy will

encourage meaningful learning by establishing evaluation

criteria and heuristics for learning how to learn that

* facilitate acquirement of the necessary cognitive struc-

tures for solving elementary combinatorial problems, and

help students cultivate strategies and tactics for dis-

covering solutions to more classical or possibly unique

combinatorial problems.

A new pedagogy will be developed (employing typical

problem scenarios accompanied by an explanation of the

value of aforementioned heuristics) that practically

3



guarantees students (who choose to learn) can experience

felt significance with course material.

Recent findings of educational psychologists favor-

ing the theories of David Ausubel have demonstrated that,

when such teaching and learning take place, the necessary

conceptual foundations for whatever the subject, can be

built by highly motivated and enthused students.

t
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II. Research Background and Proposal

Introduction

Previous presentations of combinatorics leave a

great deal to be desired pedagogically because most text-

books use difficult languages and notations, do not place

enough emphasis on visualization, and fail to show the

relationship between general and subordinate concepts.

Students, under these circumstances, usually learn combina-

torics in pure rote manner, finding no motivational reasons

for this discipline.

Doctor Ausubel's theory about meaningful learning

will be used in order to prescribe a remedy for such

deficiencies. The key idea in Ausubel's theory is that

"if learning is to be meaningful, then new knowledge to

be learned must have anchoring concepts available in the

learner's cognitive structure" (Novak, 1977:137).

This chapter is presented in four stages: three

phases and a glossary.

Phase I will deal with Ausubel's theory of learn-

ing.

Phase II will present the reasons why current

combinatorics texts simply do not support a pedagogy that

facilitates the meaningful learning process defended by

Ausubel.

5



Phase III will propose a new approach for teaching

combinatorics by using a conceptual mapping, rather than a

topically organized hierarchy of concepts, that will allow

presentations of applications in one, two, and three dimen-

sions.

Finally, aglossary provides definitions of the

basic terms used in Ausubel's theory.

Phase I. Ausubel's Theory

Ausubel's theory of learning deals with four main

concepts: meaningful learning versus rote learning and dis-

covery learning versus reception learning.

Meaningful Learning. Novak defines meaningful

learning as: "a process in which new information is related

to an existing relevant knowledg2 (subsuming concepts) in

the individual's cognitive structure" (Ncvak, 1977:74-75).

The cognitive structure of an individual refers to

the total content and organization of this individual's

ideas or concepts.

The subsuming or anchoring concepts are those rele-

vant ideas that an individual has in his cognitive struc-

ture; those relevant ideas play the main role to enable

the individual to assimilate new knowledge if there is any

interrelationship between the new information and his pre-

viously existing ideas.

6



Rote Learning. Novak points out that

When relevant concepts do not exist in the cogni-
tive structure of an individual, new information must
be learned by rote, a process in which new information
is not associated with existing concepts in the indi-
vidual cognitive structure, and therefore little or no
interaction occurs between newly acquired information
and information already stored [Novak, 1977:77].

It is important to distinguish between reception

learning versus discovery learning too.

Reception Learning. Individuals receiving this

type of learning play a passive role in the sense that they

accept external elaborated information because it is

presented in logical, assembled and congruent form; thus

they can assimilate it into their cognitive structures.

That is why Ausubel defines reception learning as "that

kind of learning in which the entire content of what is

to be learned is presented to the learner in more or less

final form" (Ausubel and others, 1978:629). Ausubel

emphasizes the role of reception learning in all education,

especially in schools.

Discovery Learning. The individuals receiving

discovery learning have to play an active role in the sense

that the content to be learned has to be selected, dis-

covered, acquired and digested by the learner. That is

the reason why Ausubel defines discovery learning as

that kind of learning in which the content of
what is to be learned is not given or presented, but
must be discovered by the learner before he can
assimilate it into his cognitive structure [Ausubel
and others, 1978:626].

7
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Reception learning and discovery learning are

viewed as a separate and independent continuum from that

involving rote learning and meaningful learning. Figure 1

shows typical forms of learning. An interesting explana-

tion of Figure 1 is given by Novak when he says,

Discovery learning can be rote; anyone can dis-
cover a solution to a puzzle or algebra problem by
trial and error, and not associate this "discovery"
with existing knowledge in cognitive structure. A
"discovery" made by a scientist is not a real dis-
covery until the new information can be related to
concepts already familiar to scientists or to a new
concept that encompasses or supercedes earlier con-
cepts [Novak, 1977:100-101].

Ausubel's learning theory is extremely important

for combinatorics educational purposes since most text-

books and presentations do not usually provide an easy

path for meaningful learning. If the task of learning

combinatorics is to be meaningful, then the new knowledge

to be learned must have subsuming, anchoring ideas avail-

able in the students' cognitive structure. These sub-

suming ideas have to be the most general, main, basic and

inclusive combinatorial concepts.

The lack of suitable course material promotes in

students a rote approach to combinatoric learning, that is

subsequently forgotten because "forgetting depends pri-

marily on the degree of meaningfulness associated with the

learning process" (Novak, 1977:84).

It is also very important to remark here the sig-

nificance of the following paragraph written by Novak:

3l
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Most information learned by rote in schools is
lost within six to eight weeks. AF a result, students
recognize that they have forgotten much of the inf or-
mation presented earlier, and that their earlier but
now lost learning is interfering with new learning
[Novak, 1977:85].

Phase II. Diagnosis

The pathology of current combinatoric textbooks is

clear, according to Ausubel's theory, because it does not

offer a pedagogical procedure that facilitates meaningful

learning. Such approach to teaching should follow a con-

gruent, assembled and logical model; for instance,

STAGE 1. RECEPTION LEARNING

1. Introduce the most general and inclusive con-

cepts first.

2. Introduce the specific and subordinate concepts

later.

STAGE 2. GUIDED DISCOVERY LEARNING

1. Show explicit relationships between the most

general and inclusive concepts.

2. Present explicit relationships between the

general and the subordinate concepts.

3. Show explicit relationships between all kinds

of subordinate concepts.

Following this model, reconciliation of concepts

should be best achieved, because instruction deals with

all ideas at all levels of the conceptual hierarchy in anli

up and down cycle fashion.

I0
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A critical aspect that reinforces the pathology

for teaching combinatorics is the nomenclature normally

used in textbooks, that requires a deep background in some

other disciplines, such as theory of groups, for instance,

or many notions of what has been called modern mathe-

matics. These supporting areas of knowledge are not com-

pletely required and should be avoided in a great per-

centage. Thus, combinatorics can be presented in a more

suitable, easy and straightforward manner, without loss

of continuity or content.

On the other hand, the lack of scientific rigor in

those textbooks is astonishing when they extrapolate results

from particular cases to general conclusions, following

unclear inductive methods.

Examples of what has been criticized can be found

all along the following main books about combinatorics

published in the United States:

1. Elementary Combinatorial Analysis, by Martin

Eisen. New York: Gordon and Breach, Science Publishers,

1969, from page 1 to page 215 (entire book).

2. Introduction to Combinatorial Mathematics,

by Chang Laung Liu. New York: McGraw-Hill Book Company,

Computer Science Series, 1968, from page 1 to page 161

(Chapters, 1, 2, 3, 4, and 5).

.A .°



3. Elements of Discrete Mathematics, by Chang

Laung Liu. New York: McGraw-Hill Book Company, Computer

Science Series, 1977, from page 1 to page 45 (Chapters 1

and 2).

4. Notes on Introductory Combinatorics, by

George Polya, Robert E. Tarjan, and Donald R. Woods.

New York: Birkhauser, 1983, page 1 to page 115 (Chapters 1,

2, 3, 4, 5, 6, 7, and 8).

Under such a lack of pedagogy, opportunities for

combinatoric meaningful learning is sometimes eliminated,

and students are forced to study course material in a rote

manner. In order to improve the above-mentioned situation,

a prescription will be given in the following Phase III.

Phase III. Prescription

To promote meaningful learning along any stage of

the continuum, from reception to discovery learning, a

remedy will be provided by:

1. Developing the most general and inclusive con-

cepts first, and the specific and subordinate concepts

later, all of them assembled on logical sequential order

of difficulty.

2. Illustrating some relationships between all

concepts in order to make clear distinction between which

one of those are the most general and superordinate, and

which ones are more specific and subordinate.

12
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3. Introducing a conceptual map, rather than the

mere definition of the topics, that will graphically show

those relationships bridging general and subordinate con-

cepts. The conceptual map will be used recursively in

solving combinatoric counting problems in one, two and three

dimensions.

4. Presenting an adequate set of problems,

arranged in increasing degree of difficulty, to help stu-

dents understand the combinatorial hidden snags. Such

problem-solving ability represents an opportunity for mean-

ingful learning because it requires well-differentiated

relevant concepts in cognitive structure.

Glossary (Ausubel and others, 1978:624-630)

1. Anchoring idea(s)--an established relevant idea
(proposition or concept) in cognitive structure to which
new ideas are related and in relation to which their
meanings are assimilated in the course of meaningful
learnings. As a result of this interaction they them-
selves are modified and differentiated.

2. Cognitive structure--the total content and organi-
zation of a given individual's ideas; or, in the con-
text of subject-matter learning, the content and
organization of his or her ideas in a particular area
of knowledge.

3. Discovery learning--that kind of learning in which
the principal content of what is to be learned is not
given (or presented), but must be discovered by the
learner before he can assimilate it into cognitive
structure.

4. Forgetting--a process of memorial reduction or
obliterative assimilation that occurs in the course
of storage (retention); as a result of this process,
the dissociability strength of an acquired meaning
falls below the threshold of availability and the
meaning is accordingly no lonqer retrievable.

13
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5. Idea--a concept or proposition relatable to cogni-
tive structure.

6. Integrative reconciliation--part of the process
of meaningful learning that results in explicit delinea-
tion of similarities and differences between related
ideas.

7. Meaning--a differentiated and sharply articulated
content of awareness that develops as a product of
meaningful symbolic learning or that may be evoked by
a symbol or group of symbols after the latter have
been nonarbitrarily and substantively related to
cognitive structure.

8. Meaningful learning--the acquisition of new mean-
ings; it presupposes a meaningful learning set and a
potentially meaningful learning task (that is, a task
that can be related in nonarbitrary, substantive
fashion to what the learner already knows). Part of
the rote - meaningful learning continuum as dis-
tinct from the reception 10 discovery learning con-
tinuum.

9. Meaningfulness--the relative degree of meaning
associated with a given symbol or group of symbols
as opposed to their substantive cognitive content,
as measured by degree of familiarity, frequency of
contextual encounter or degree of lexical substantive-
ness (for example, a noun or verb in contrast to a
proposition).

10. Problem solving--a form of directed activity or
thought in which both the cognitive representation of
prior experience and the components of a current
problem situation are reorganized, transformed, or
recombined in order to achieve a designated objective;
involves the generation of problem-solving strategies
that transcend the mere application of principles to
self-evident exemplars.

11. Progressive differentiation--part of the process
of meaningful learning, retention, and organization
that results in further hierarchical elaboration of
concepts or propositions in cognitive structure from
the top downwards.

12. Reception learning--that kind of learning in which
the entire content of what is to be learned is presented
to the learner in more or less final form. Related to
the reception - discovery continuum as distinct
from the rote )I meaningful learning continuum.

14
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13- Rote learning--the acquisition of arbitrary,
verbatim associations in learning situations where
either the learning material itself cannot be nonarbi-
trarily and substantively related to cognitive structure,
or where the learner exhibits a nonmeaningful learning
set.

14. Superordinate learning--learning the meaning of a
new concept or proposition that can subsume relevant
and less inclusive particular ideas already present in
cognitive structure.

15
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III. Presentation of Concepts

Introduction

This chapter will introduce the most general and

inclusive concepts of combinatorics first, and the specific

and subordinate concepts later, permitting a smooth recep-

tion process into the students' cognitive structure. Later

on, those concepts will be explained in detail and graphi-

cally represented, allowing a guided discovery learning

when some considerations will be made about the relation-

ships between concepts compiled in a hierarchical conceptual

map.

Thus, three interconnected sequences are going to

be presented in an uninterrupted flow:

1. Sequence 1--main and subordinate concepts

2. Sequence 2--graphical representation of concepts

3. Sequence 3--relationships between concepts

Along the trip that goes from reception learning

to discovery learning (guided), students should be able to

find enough clearness, hopefully, for a meaningful learning

task.

Sequence 1

Main Concepts. Combinatorics deals ith the prob-

lem of counting how many different subsets can be made by

choosing n elements from a given set of m distinct objects.

16
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In other words, given a set of m different elements (a1 # a2

# a3 0 . # am ), combinatorics' job consists of computing

the number of all possible distinct selections of n objects

that, meeting certain criteria, can be made from the given

original set of m different elements. Such criteria only

have two options:

Option 1--the order is relevant (variations)

Option 2--the order is irrelevant (combinatorics)

Option 1--Order is Relevant (Variations).

Two subsets of n elements selected from m, such that both

subsets contain exactly the same elements, are considered

different subsets if the order their elements are arranged

is different.

Example. Given a set (a, b, c, d), two different

subsets are (a, b, c) and (a, c, b) because even though

both have the same elements (a, b, c), they are arranged

in different order. When order is the relevant criteria,

the combinatorics notion is named variations.

Consequently, variations can now be defined like

this: any ordered sequence of n objects taken from a set of

m distinct objects is called variation of size n.

Another way of expressing the same idea could be:

Given a set of m distinct elements a# a2 0 a3  .

am, variation of size n is every possible subset composed

by n elements taken from those m, agreeing that two

17



variations of size n are different if they have at least

one element that is different; or if both have the same

elements, these are arranged in a different order. That

is to say, subsets are different if they differ at least

in one element, or, if they have the same elements, their

arrangement (order) is different.

Example. The twenty-four variations of the four

different elements (a, b, c, d) taken in subsets of three

elements are:

(a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a),

(a,b,d), (a,d,b), (b,a,d), (b,d,a), (d,a,b), (d,b,a),

(a,c,d), (a,d,c), (c,a,d), (c,d,a), (d,a,c), (d,c,a),

(b,c,d) , (b,d,c), (c,b,d), (c,d,b) , (d,b,c), (d,c,b),
3 2

One way to symbolize this accounting problem is V = 24.
4

In general, Vn would represent variations of m elementsm

taking n at a time.

In Chapter IV, a general procedure for calculating

variations will be explained.

Option 2--Order is Not Relevant (Combi-

nations). Given a set of m distinct objects, any unordered

subset of size n is called combination. Thus, combinations

of those m different elements taken in subsets of length

n have to differ in one element at least.

Example. If three soldiers have to be chosen from

3a group of 4, the C are four:

18 •,



(a,b,c), (a,b,d), (a,c,d), (b,c,d), because here order of

the elements does not matter.

In Chapter IV a general formula will be deducted

for computing combinations of m different elements taken n

at a time.

So far, the two basic concepts of variations and

a. combinations have been introduced, albeit from these main

ideas some specific and subordinate concepts should be

derived.

Subordinate Concepts.

Option 1--Order is Relevant (Variations).

Given the initial set of m distinct objects (a1 #a 2  a

a # am ) the selection of subsets of size n can be

constructed in two forms:

1. No permitting replacement into the original

set of length m of any element that has been used for con-

structing a subset of length n. In this manner, objects

cannot be repeated because they cannot go back and forth

from the original set into any subset, and vice versa.

It is a one-way trip. Thus, m > n (if m = n, this is a

particular case called permutations, that will be studied

later). These kinds of variations are named ordinary

variations, the notion having already been introduced.
3 2

Remember that, for example, V4  24.
4

.5. 19
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2. But if replacement is permitted and, conse-

quently, all elements belonging to the original set can be

repeated any amount of times in the process to construct

the subsets of length n, the problem is absolutely differ-

ent, and this new situation could be seen as if the original

set has now m different elements, each of them indefini-

tively repeated. This is the case called variations with

repeated selection.

Example. The nine different two-digit numbers that

can be formed using the single digits 1, 2, and 3 are:

12, 13, 23, 11, 22, 33, 21, 31, 32.

A form to represent the variations with repeated

* 2selection for this problem is VR3 = 9.

In general, VR n represents variations withm

repeated selection of m elements taken n at a time.

3. Going back to the concept of ordinary vari-

ations (where replacement is not allowed) it has been

assumed that m -, n; that is to say, the number of the dif-

ferent objects composing the original set is greater than

the number of the different elements belonging to every

subset. But nothing prevents that, in the limit, m could

be equal to n. In such case, every subset of length m

has to take all the m elements belonging to the original

set. As in variations the order of the elements is rele-

vant, every subset of length m has to have a different

arrangement. In this particular case, ordinary variations

20
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are called ordinary permutations, and they are represented

asvm= Pm m

Example. The six permutations that can be formed

with the elements (a, b, c) are:

(a,b,c)

(a,c,b)

(b,a,c)
P3 = 6

(c,b,a)

(c,a,b)

(b,c,a)

4. Speaking about ordinary permutations as a par-

ticular case of ordinary variations when the number n of

objects composing each subset coincides with the length m

of the original set (m = n), some extremely important con-

siderations have to be made:

a. In two dimensions. For instance, when an

observer is trying to solve on a piece of paper (that is a

plane) the problem of counting in how many different ways

he can arrange (that means, permute) three different

elements (a, b, c) in a circular fashion, he would notice

that

a c b

These three permutations are all the same because the

relative position of the three elements is always the same;

21



so, instead of three, he finds there are only two different

permutations: a

c Cb b

Thus, if every single linear ordinary permutation

is going to be seen three times circularly, the observer

should divide between 3 the number of ordinary permutations

6
in order to solve his problem. If P3 = 6, now - = 2 is

the solution.

This case is called circular permutations (PC),

and the ability to visualize it well will be extremely

useful later on in order to solve three-dimensional prob-

lems.

b. In three dimensions, the observer is try-

ing to figure out, for example, in how many different ways

he can paint the vertices of a right equilateral triangular

prism, painting one vertex in red, one vertex in green,

and leaving blank the other four. The graphical solution

is _

This is a more difficult problem, but cspecially

is going to deal with circular permutations by rotatinq the

figures along all these axes of symmetry and computing only

the different arrangements (configurations or permutations)

7 
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that appear after every rotation (eliminating those arrange-

ments that are iantical). In this process, the concept of

substitutions will be presented later. This is a method

that facilitates the representation of the relative posi-

tion of the vertices in the space every time the figure

(prism, tetrahedron, pyramid, cube, etc.) has been rotated

a certain amount of degrees.

Going back to the problem, let us say for now that

the solution is five, as can be seen graphically.

5. In the way combinatorics concepts have been

presented, an assumption has been made: all m elements

belonging to the original set are different; thus,

a1 # 22 # a3 # # a . But a new situation can be

presented if several of those m elements are repeated.

Under the new assumption, the original set structure could

be

m

ala a a a a a a a a a ... a
1l 12 2 2 3 3 3*

where element a1 is repeated , times,

element a2 is repeated 2 times,

element a is repeated times,

. . . . . . . . . . . . . . . .

• . . . . . . . . . . . . . . .

element a is repeated . times,
u

being + + . m.
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When calculations are made for computing the

number of different permutations here, some corrections to

the concept of permutations formerly presented have to be

made to avoid the selection of duplicated arrangements.

Example. The different ways that the three letters

a, b, b can be permuted are three:

(a,b,b), (b,a,b) and (b,b,a),

a solution that is different to be one presented in the

previous paragraphs.

Thus, a new notion has to be introducted, that con-

stitutes an exemption to the general hypothesis that

a1 # a 2 # a # . a . The name for the new concept

is permutations with repetition, and will be a golden key

that will unlock the door of many problems.

Option 2--Order is Not Relevant (Combina-

tions). Given the initial set of m distinct objects

(a1 # a2 # a3 # # a ), the selection of subsets of
2 3 m

size n can be constructed in two forms:

1. No permitting replacement into the original

set of length m of any element that has been used for con-

structing a subset of length n. Thus, objects cannot go

back and forth from the original set to the subsets. Thus,

m > n. These kinds of combinations are called ordinary

combinations, the notion of which has already been explained
3 4

in option 2. Recall that C4  4.

41
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2. But if replacement is permitted and, conse-

quently, elements comprising the original set can be

repeated in constructing the subsets, the case is totally

different, and the new situation can be seen as if the

original set has now m different numbers, each of them

indefinitely repeated. This case is named combinations

with repeated selection.

Example. With the three objects a, b, c, the

following combinations with repeated selection can be made:

Length 2. aa, ab, ac, bb, bc, cc.

Length 3. aaa, aab, aac, abb, abc, acc, bbb, bbc, bcc, ccc

Length 4. aaaa, aaab, aaac, aabb, aabc, aacc, abbb, abbc,

accc, bbbb, bbbc, bbcc, bccc, cccc

A form to represent this problem is

2 3 4CR3 = 6; CR 3 10; CR = 15

In general, CRn.m

Sequence 2

Main and subordinate concepts can be interrelated

in the hierarchical map shown in Figure 2.

Sequence 3

1. The highest and most inclusive concept in

combinatorics is ordinary variations because it takes into

account every possible different confiquration of the

elements attending to the order in which the chosen elements

are arranged.

25
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In a second level of importance are ordinary com-

binations, where order of the chosen elements is irrele-

.vant. For instance, if 234 is a particular combination

of length 3, all the possible arrangements (permutations)

that can be made with these three digits are

234, 243, 423, 324, 342 and 432.

These six different numbers represent the same combination,

but they are six different variations. Thus, if the n

elements of a combination are permuted in all possible ways,

the result is variations. That means

n  p n

m n m

2. ordinary permutations is a particular case of

ordinary variations, when m = n. Thus, Vn  P
m m

3. Permutations with repetition should be con-

sidered particular cases of ordinary variations when the

general hypothesis that a1 # a2 # a3 # ... # a is broken

and some elements are equal between them.

4. Circular permutations concept is the same as

ordinary permutations concept. What introduces a differ-

ence here is the fact that ordinary permutations are devel-

oped in one spacial dimension, while circular permutations

are presented in two spacial dimensions. Thus, the observer

counts differently in every case. For instance,

4..
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represent four different ordinary permutations, but only

one circular permutation

124 1 34 2 3

4 3 3 2 2 1 1 4

because the spectator has the freedom in two dimensions

to rotate or flip the figure along its axes of symmetry

and verify that the relative position of the four elements

is always the same.

All these relationships will be explicitly shown

in Chapter IV, where formulas to be applicable to every con-

cept already introduced will be deduced, followed by some

practical applications.

7
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IV. Formulas and Applications

Introduction

This chapter will be divided into the three follow-

ing sections:

1. Section I. Deduction of the general formulas

of:

a. Ordinary variations.

b. Variations with repeated selection.

c. Ordinary permutations.

d. Circular permutations.

e. Permutations with repetition.

(1) Power of the polynomial (Leibniz'

Formula).

f. Ordinary combinations.

(1) Properties.

(2) The Tartaglia's Triangle.

(3) Power of a binomial (Newton's Formula).

2. Section II. Solution of concrete problem

scenarios in one and two dimensions using the conceptual

framework provided by the concept map.

3. Section III. This part will exclusively deal

with solving combinatoric problems in three dimensions.

When a regular body is rotated or flipped in the space

along its axes of symmetry, students have to be able to

29
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count how many different arrangements (permutations) of the

faces, vertices and sides, they can see.

As it will be seen later, permutations in one

dimension (Ordinary Permutations) compute a bigger number

of possibilities than permutations in two dimensions (Circu-

lar Permutations), and these compute an even bigger number

of possibilities than permutations in three dimensions

(Substitutions). The conclusion is that as more freedom

a body has, the simplest is the solution (less possibili-

ties), which goes against human intuition.

The theory of substitutions (ordinary and Circular

Substitutions) will be presented as a method that will

allow any static observer to track the relative interposi-

tion of the vertices, faces and sides of a regular body

* when it is rotated symmetrically in the space.

In order to solve this kind of problem, two steps

are necessary:

Step 1. Calculate the cycle index. The cycle

index (that serves as a catalyst) consists in a division

or proportion between:

a. Numerator: the total number of rotations per-

formed, grouping them in circular substitutions or cycles

that have the same pattern or structure.

b. Denominator: the total number of rotations per-

formed.

30



For instan~ce, if the total number of rotations

that has been performed is 10, and these 10 rotations can

be classified in three different kinds of circular sub-

stitutions, such that

10 = 1 circular substitution class A + 3 circular

substitutions class B + 6 circular substitutions class C,

the cycle index will be:

circular circular circular
1 substitution + 3 substitutions + 6 substitutions

class A class B class C
10

Step 2. Calculate the pattern inventory. This

tool consists of the replacement of every term in the

nominator of the cycle index (circular substitutions

class A, circular substitutions class B, etc.) by all the

possible circular substitutions belonging to each class.

Really, what the pattern inventory does is the development

in detail of the cycle inventory. Hopefully, analyzing

the pattern inventory, an answer to every specific problem

should be deducted, as it will be seen later.

Section I. General Formulas

ordinary Variations (order is Relevant) . Any

ordered sequence of n objects taken from a set of m dis-

tinct objects is called a variation of size n of the

objects.

- 31
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Given m different elements a1 # a2 # a3 #

# am, variation of size n is any group of n elements

chosen from those m, agreeing that two variations are

different if they differ in one element at least, or if

both have the same elements, their order of allocation

is different. Thus, two variables are taken into account

in variations: different elements and order of the elements.

The number of variations of size n made from m

given elements, will be symbolized by Vn. Notice thatm

here m > n.

The general formula for ordinary variations can

be deduced in this way:

Supposing that all possible variations of size

(n-i) are known (V -l), there are m - (n-1) = (m-n+l)
m

elements that have not been used in every variation of

size (n-i).

The objective now is passing from Vn - I to Vn .

m m

If every one of the (m-n+l) elements that have not been

used in every Vn -1 is added to its right, for each vari-m

ation, Vn -i will appear (m-n+l) variations of the typem
n

Giving values 1, 2, 3, ... , n to n in the expres-

sion (m-n+l) n- = V
n ml
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n=l1, (m-l+l)V 11= mV 0-=V
m m m

n2, (m-2+1)V 2-1 =(MI)V 1 = 2
m m m

n = 3, (m-3+l)V 31= (m-2)V 2= V3
m m m

n = 4, (m-4 +l)Vm4- = (m-3)V 3  = 4
mm m

n , (m-n+l)V n-i (m-n+l)V'-1 =nm m m

Therefore,

1
V -mm

V2 (m-1)V I
m m

= (m-2)V 2
m m

V 4 (m-3)V 3
m - -m- -

V = (m-n+l) Vn-i

Multiplying these qualities member by member and

eliminating common factors,

Vrn = m(m-l) (m-2) (m-3) ... (m-n+1) = m!
M (in-n) I

= (rn-n)!

Example. How many different numbers of three characters

could be formed with the digits 1, 2, 3, and 4 without

repeated selection?

33



V4  (43) 4! : 4.3.2.1 =24 numbers.
4 (4-3)! 1!

Example. How many different numbers of four digits without

having a repeated digit are there in the decimal system?

The total different numbers of size four that can

be generated with the ten digits (0, 1, 2, . .. , 9) are

V fbut those beginning with 0 have to be subtracted

because they are not four-digit numbers. Therefore,

V 4  - 3 10! _ 9! -10! -9! -1 (10!-9!)

10 9 (10-4)! (9-3)! 6! 6! 6!

-4,536 numbers.

Variations with Repeated Selection (order is

Relevant) . If in ordinary variations every variation has

to be composed by different elements, in variations with

repeated selection it is possible that any object a1 , a 2,

a V a ncould be repeated any number of times.

The number of variations with repeated selection

of size n, made from a set of length m, will be symbol-

ized by VRn. Notice here that m><n.

The general formula for variations with repeated

selection can be deduced in this way:

Suppose that all possible variations with repeated

selection of size (n-1) are known (VR ) . There are
m

always m elements available to use when the objective is

n-l n
passing from VR M to VR
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If every one of the m elements that have not been

used to construct every VRm- is added to its right, for

each variation with repeated selection VR n -  will appear
m

m variations with repeated selection of the type VR m  Thus,

if one variation VR produces m variations VRn , all vari-

n-I n-l nations VR will produce m- VR = VR . Giving valuesmmm

S, 2, 3, ..., n in the exprssion n- n

n = 1, mVR 1 - 1 =mVR 0  VR = mm m
S.

2-1 1 2n = 2, m = mVR =VR

n = 3, mVR 3 - 1  mVR2 3VR3

m m m
4-13 4n =4, iVR 4  inVR =VR

n = n, mV n -  = mVR n - I = VR n

m m m

Multiplying these equalities member by member and

n neliminating common factors VR = mn
m

Example. How many different numbers of three characters

could be formed with the four digits 1, 2, 3, and 4?

3 3VR 4 = 64 numbers.
4

Example. How many different numbers of four digits are

there in the decimal system?

VR0- R 3 10 - 10 = 9000.
10 10
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Ordinary Permutations (Order is the only Possible

Variable. In ordinary permutations, order of the elements

is not only important, it is the only variable that can be

taken into account because the same m elements are always

selected from the original sample space. Thus, different

permutations can only differ in the way those m elements

are arranged. Recall that two variables were taken into

account when n elements were selected from m for construct-

ing variations.

Ordinary permutations are a particular case of

ordinary variations when m = n. Thus, the ordinary varia-

tions of size m that are made by choosing all the elements

belonging to the original set of m objects are called

ordinary permutations. That is to say

p Vm = m m! m =M
m m (m-m), 0! 1

Mathematicians have convened that 0! = 1 because

if Vn = m(m-l) (m-2) . . (m-n+3) (m-n+2) (m-n+l),
m

Therefore,

Vm = m(m-1) (m-2) . . . (m-m+3) (m-m+2) (m-m+l)
m

= m(m-l)(m-2). . . 3 2 1 = m!

Thus,

P = m! Q.E.D.m
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Example. In how many different ways can the seven colors

of the rainbow be rearranged?

P P7 = 7! = 7-6.5-4-3.2-1l 5,040 ways.

Example. How many different words of eight letters can

be constructed with the vowels a, i, o, ui, and the con-

sonants b, c, d, f, without having two vowels or two

consonants together, and without repeating any vowel or

consonant?

The four vowels can be arranged in P 4= 4! ways.

The four consonants can also be arranged in

p 4 = 4! ways.

Every arrangement of the 4! permutations made with

* vowels can be associated with every arrangement of the 4!

* permutations of consonants in two different ways:

beginning with vowel or beginning with consonant.

For example, a b u c i f o d or

b a c u f i d o

Therefore, P 4 *P 4'2 = 2 -(P 4) 2= 2(4!) 2= 1,152

different words.

Circular Permutations (Ordinary Permutations but in

a Two-dimensional Space). The difference between ordinary

permutations and circular permutations is that the former

works in one dimension (a line), but the later works in
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two dimensions (a plane). For instance, given three

people a, b, c, two different problems are:

1. Arrange the three people in a row in all pos-

sible ways (ordinary permutations); and

2. Arrange the three people around a table in all

possible ways (circular permutations).

The solution for the first problem is easy,

P 3 = 3! = 6 different arrangements. Graphically,

abc, acb, bac, bca, cab, cba

But in two dimensions the problem is not so easy because

here there is no first and no last element. What counts

is the relative position of every object in respect to

the other objects. Thus, three arrangements

a c b

c~b b a aOc

are indeed the same circular permutation because the

intermutual position of the three elements is identical.

Therefore, the problem has only two solutions in two spa-

cial dimensions:

a a

bbcD" cO
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A general procedure for forming the number of

circular permutations that can be done with m different

objects (a1 1 a2 0 a3 A ... : am) could consist of fixing

one element and permuting, by ordinary permutations, the

remaining (m-1) elements.
a a a a a a

b d d Cc c -' .b c -d dt -b b'

, b
c b d b c d

a.

Given four different elements (a,b,c,d), the figure

above represents the six different circular permutations

that can be formed. Element a has been fixed, and the

other three elements (b,c,d) have been ordinary permuted.

Not taking a into account, there are now first and last

elements.

In general, PC = = (m-l)

Example. In how many different ways can seven people sit

down around a circular table?

PC7 = C7 1 = C 6 = 6! = 720 ways.

Example. In how many differernt ways can the vertices of a

square be painted with four different colors?
b abcd

Recall that bcda
i . cdab

d c dabc

represent four different ordinary permutations (one dimen-

sion), but only one circular permutation (two dimensions).

.5 39
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As a square, like a circle, is a a two-dimensional figure,

the solution is PC 4 = P3 = 3! = 3-2-1 = 6

Graphically,

a b a d a c a b a c a d

d b b d c b

Permutations with Repetition (Order is the Only

Possible Variable). In ordinary permutations all the m

elements belonging to the original set are assumed to be

different (a 1 # a 2 a 3 # ... # a).

In permutations with repetition some of those given

m elements are repeated:

m

alal,...al, a21 a2,...a 2, a3 1a3 ,...a 3,..., a Z, az,.., aZ

where

element a1 is repeated a times

element a2 is repeated B times

element a 3 is repeated y times

element a is repeated \ times

being + + + ... + X= m

40
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A procedure for calculating the general formula

of permutations with repetition could be:

Suppose you have an original arrangement of those

m elements

m

a a1 . a aa 2 .a a a a a a a
1 a -1 2a2- 2 3 3-. 3-. a£ C z

S.

If the a a1 elements are switched between them,

there will be Pa = a! identical permutations.

If the 3 a2 elements are switched between them,

there will be P = 3! arrangements exactly equal.

The same reasoning is applicable to the rest,

getting P = Y!, ... ' P= A! permutations that are identi-

cal to the initial one.

Thus, the total number of permutations that end

up being identical to the original arrangement is a!3!y!

%
%...

Therefore, dividing the ordinary permutations (Pm

of the m elements between the total number that each one

of those permutations is found repeated, the result will be

the number of different permutations.

The result of this process is called permutations

with repetition, and is represented by
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= m MI

m ! : ... .X ! '. . '

Example. In how many different ways can be ordered 20 books

in a book shelf knowing that 6 have a black cover, 5 a white

cover and 9 a red cover?

6,5,9 ,20! - 77,659,752 ways
P2 0  615191

Example. What is the number of different permutations of

the letters in the word Mississippi?

There are 1 M
4 i's
4 s's
2 p's

11 letters

Thus, PR 1,4  -,4,242 34,650 permutations
11 114!4!2!

Power of a Polynomial (Leibniz' Formula).

The purpose of computing the power of a polynomial is to

calculate the value of expressions like
n

m
(a + b + c +

n

being a#b#c# ... #
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In general, it can be said that

(a+b+c+...+k) m  = a b c .c . .. Z

where there are n different factors (a~b#c.. .#;) in every

term of the sum Zaab c ... z albeit there are a total of

m factors (a+2+y+ ... +X) in all of the summed terms.

The following question is how to calculate those

terms with their respective coefficients.

The coefficient for every term can be obtained

using permutations with repetitions, because any term

At
aa...abb...bcc...c... 9,...Z =a bc

will be repeated PRa' Iy...=A M.
m T !-y! ... !

being c+3+-+...+N= m.

Thus, the expression has turned to be

n

(a+b+c+...+ )m = lm ...

but how to know the value of , A tricky method

will be taught. Splitting the number m of total factors

(m= +3+y+. . .+X) into all possible natural (nonfractional)

subsets of n different factors, their respective exponents

will be derived.

43
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//5
For instance, (a+b+c+d) Z b5 cd

+S+y+6= m = 5 # of total factors

a#b#c#d; n = 4 # of different factors

Splitting 5 into 4 subsets, in all possible natural

ways (fractions cannot be used), the values for exponents

a,,y and ' are:

m = 5 + 0 + 0 0 Al . ... .

m= 4 + 1 0 .

m =3 + 2 0

m =3 + I + I

m =2 + 2 

m = 2 + I I I

"'hus, (a-b~-q,)

5S! 0! 0 F0J- 0-

5!___ 4 4 4 4 4 4, 4 4 4 45! (a b+a c~a d-b a-b c--b 4,]ca, b-c ddC~a]
4!i!0!0!

di b+d C)

+ 3!2!0!0! (a b + C ad + b a b + b 3

3 2 3d2 32 32
+c b + c d + d a + d b2 d3c2) +

44
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+ 5! (a 3bc+a 3bd+a 3cd+b 3ac+b 3ad+b 3cd+c 3ab+c 3ad++ 3!1!1!0:

+c 3bd+d3 ab+d 3 ac+d 3bc)

+ 2210! (a2 b 2c+a2 b 2d+a2 c 2b+a2 c 2d+a2 d 2b+a2 d 2c+b 2c2a+

+b2 c 2 d+b2 d 2a+b 2 d 2c+c 2 d 2 a+c2 d 2b)

5!2222

+ 52!1!1!! (a 2bcd+b 2acd+c 2 abd+d 2abc)

In general, the Leibniz Formula for obtaining

the power m of a polynomial expression composed by n dif-

ferent elements, is

' n M! M! .! ab c( "S

(a+b+c+...+2.)m mb

.. being a+B+y+...+X = m

where crr,..., receive all possible systems of natural

values into which m can be split. NOTE: The power of a

binomial (Newton's Formula), that will be seen in ordinary

combinations, is a particular case of the power of a poly-

nomial (Leibniz' Formula).

Ordinary Combinations (Order is Irrelevant). Recall

that two variations are different either because (1) they

differ in one element at least; or (2) they have the same
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elements but in different order. In contradistinction to

the case of variations where either one or both variables

may be relevant, in the case of combinations there is only

one variable: some element(s) are different.

Thus, given a set of m distinct objects, any

unorder subset of n of the objects is called an ordinary

combination. Consequently, two combinations are the same

if both have the same elements, even though they are

arranged differently; and two combinations are different

if they differ in one element at least.

The number of combinations of size n, made from a

set of m different elements (a 1 9a 2 Aa 3#3.. .#a), will be

symbolized by C n or (in)
m n

Notice that here m > n.

A method f or computing the general formula of

ordinary combinations could be:

Suppose you already know all possible C n(where
m

order is not relevant).

nTake every single combination from C Mand permute

it (P n in all possible ways. For every single combination

you will get P different permutations (where order is then

unique variable).

The total number of configurations that you will

have now is Cn xPF because all the combinations (Cnm nm

have been arranged in every conveivable manner, and that,

by definition, are ordinary variations. So,
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Cn x P =V n

m n m

Therefore,

V n  M!'

Cn m = (m-n)! m!
m P n! (m-n)!n!n

Example. How many different selections of 11 soldiers from

a group of 14 can be made?

11 14! 14! 364 selections.C1 4 = (14-11)!11! 3!11!

Example. Form the ordinary combinations of length 2 of the

objects a, b, c, d, e

ab, ac, ad, ae,

bc, bd, be, 2  5! 5 5.4 20i0 = C !5 . 0i

cd, ce, 5 2(5-2)! 2!31 -2 2 1

de

Properties. P

m m
n m-n~

Proof.

(m) =C n _ m!
n m (m-n)!n!
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=R-I V~dw MVP 4 I-Nv6 A vv W. - V& '.

rn rn-n M, M!
(rn-n) = Cn [r-(r-n)](rn-n)! (r-nfln!'

Q.E.D

m rn-1i M-i1
n n n-

Proof

n 1rn-i-n)!n! -(m-n-i)!n!

rn-i (rn-i)! _ (rn-i)!
n-i [r-i-(n-i) ]!I(n-i)f = (rn-n)!I(n-i)!

SUM = (r-) + (ri)(r-n-i) !n! (r-+ (n-i)

(rn-i) l(r-n) + (rn-i)In
(rn-n-i) !n! (rn-n) +(rn-n)!I(n-i) !n

(r-1)!(r-n)+(rn-i)!n _ (r-lfl[rn-n+n]
(rn-n) In! (r-n)!n!

(r-i)!m M! Irn = n
(r-n)!n! (r-n)!n! - n rn

Q.E.D.

The Tartaglia's Triangle. Being (m)= (In )n n
+ (M ), the Tartagiia's Triangle is, by definition,

n-i
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m= 1

M= 2  2 2 2

m 33 3 3 3m= 2 (3)
m 4 4 4 4

m = 0

m=1 1 1

m= 2 12

m =3 1 3 3 1

m= 4 1 4 6 4

m =5 1 5 10 10 5

Power of a Binomial (Newton's Formula).

Given m binomial factors, the product is

(x+a1) (x+a2) (x+a3) ... (x+am-1 ) (x+aM )

m mn-i
-x + x (a1+a2+a3+ ... + aM)

m-2
+ x (ala2+a1a3+a1a4+ ... + am)la M )

+ xm-3 (a a 2a 3+a a 2a 4+a a 2a + ...

+am_2 am_lam)

+...........................................................

x(a1 a2a3  -am-1 a3 a4 m

+a 2a 3 a )a a a a a

923 m 123 rn- an49



If a, = a2 = a 3 = ... = am , the new development

of the product is

(x+a)m

x + x a C
m

m-2 2 2
a Cm

m-3 3 3
+ x .a C

+ x m- 1  Cm - 1

m+ a

Therefore,

x am O m 0 1 m-1 2 m-2 2
(x+a) ()x a + ( )x a + (2)x a

(3)m-3 3 . . m m-1 m 0 m
+a3)x a + + rmn-)xa + (M )x a

Example.

6 6 0 6 6 5 6 2 4
(x+a) =( 0 )x a + (1)xa + ( )x a

(6 3 3 6 4 2 6 5 6 6 0

+ )x a + (4)x a + (5 )x a+( 6 )x a

The coefficient for every term can be obtained

using the Tartaglia's Triangle:
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0

M1

M 22 2 2
m = (0m = 3i( ( ) (

M 33 3 3 3

m= 1 2 3m =3 1 )  3i 32 1a

M 4 1 4 4 4 4

m 5 5 5 1 1 5 )
6 2 1 ( 5

(6) 6 6 6 6 64) 6

m = 0

m=

m =2 21

m 3 33

m =4 41

m 5 1 510 1051

m 6 66 15 20 15 6 1

6 6

= 15 = (4)

6 = 20 = 6

Therefore,
(xa6 6 5 52 4 3 3 4 2

(x+a) a + 6xa + 15x a + 20x a + 15x a

+ 6x 5a + x 6
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Note the symmetry of the coefficients (1-6-15-20-15-6-1).

The same result should be obtained usin, the Liebniz

Formula for the power of a multinomial.

(x+a) 6 = 6! = xaaa pR 6 ,  .. xtaB
(x~a) - T 6

a + m = 6 ; n = 2

Set of natural values for a and 3

m- 6 + 0

m= 5 + 1

m= 4 + 2

m 3 + 3

Thus, (x+a)
6

6' 6 !6 6
6!0! (x 6+a 6) + 5 6!(x 5 a+xa 5 )

6! (x4a+xa 4 + 6! 3 3
4!2! )+3!3! x a

6 a6 +ax 2 +52a4 + 033

= x + + 6x5a + 6xa 5 + 15x 4 a + x a + 20x 3a

6 5 4 3a3 4

a + 6xa 5 + 15x 2a + 20x a + 15x 4a + 6x 5a + x

Q.E.D.

Note again the symmetrical disposition of the coefficients

(1-6-15-20-15-6-1).

Comparing both procedures, the binomial and the

multinomial, a conclusion can be made that,
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77 F7,77 -7-7N-7 7 - 77-7 W - V. WV -_71

C0 =6 = PR' 0 - 16 6 6

-1 5 51 
6 C6  6

C 2 = C6 = PR 4' = 156 6 6

3 3 3 3
C = C6 = PR ' = 206 6 6

Note: These equalities happen because

= cm-n = pRn , (m-n) - m!
m m mn(m-n).

but such particular mathematical truism cannot be general-

ized in the sense that any ordinary combination can be

represented by a permutation with repetition. Remember

the different initial conditions: in ordinary combinations

the m given elements are all distinct (a#a 2 #a3  ... a

but in permutations with repetition some of the m elements

are repeated

m

aa 1 ...aaa2 .. aaa a aa a1 1* ' 1 2 2 - 2 3 3'* 3 - z. Z .. .9

53
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Example. Calculate (a+b+c) 4using the Leibniz Formula.

Solution.

m = 4 = 4 + 0 + 0 Set of all possible values

m =4 =3 +1= 0 for a~, sand y.

mn 4 2 +1 2:1\f

4 4!(a+b+c) a abc

4! 4 0 0 4! 3 1 0
4!0!0! ab 3!1!0! ab

4! 2 2 0 4! 2 1 1
+ 2!2!0! Za bc + 2!1!1! Zab c

=a 4+ b 4+ c 4+ 4(a 3b+a 3c+ab 3+b 3c+ac 3+bc3

+ 6(a 2b 2+a 2c 2+b 2c 2) + 12(a 2bc+ab 2c+abc2

4
Example. Calculate (a+b+c) using Newton's Formula.

Solution.

(a+b+c) =[(a+b)+c]

4 )(a+b) 4c 0+ 4 )(a+b) 3c 1+ 4 )(a+b) 2c 2

+ (4 )(a+b) 1 c3 +4 )(~)0 4

+ 4( 4) 6a~)2

(a 4 + 4( a~)3c+ 6(~)2c2 + 4(a+b)c 3+c4
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.::.' 4 a40 4 31l 4 2 4 0b4
4 = ( 0 )a b + ()a b + ( 2 )a 2b + ( 3 )ab3 + ( )b

30 3 21 3 2 3 03

+ 4( 0 )a 3 b c + 4(1 )a b c + 4(2 )ab c + 4( 3 )a b c
2 0 2 2 112 2 022

+ 6()a2 b c + 6( )a b c + 6( 2 )a b c

+ 4ac 3 + 4bc 3 + c 4

I i= a 4+ 4a 3b+ 6a 2 b 2 + 4ab 3." + 3b b 4

D.%.+ 4a 3c + 12a 2bc + 12ab 2c + 4b3 c

4 3 2 2 2+ 6a c + 12abc + 6b c

+ 4ac + bc + c+

a a4+b 4+c 4 + 4 (a 3b+ab 3+a 3c+b 3c+ac 3+bc 
3

+ 6(a 2b2 +a2c2+b2c 2  + 12(a2 bc+ab2c+abc2

4 b 4 +c + 4 (a 3b+a3 c+ab 3+b3c+ac 3+bc3

+ 6(a2 b 2+a 2 c 2+b2 c 2) + 12(a 2bc+ab 2c+abc 2

.55

"%%,55

*. ..S . -. * .5bS



Combinations with Repeated Selection (order is

Irrelevant). If in ordinary combinations every combination

is composed by different elements, in combinations with

repeated selection it is possible that any element can be

repeated any number of times. Therefore, combinations

with repeated selection are different subsets of n elements

each, which have been taken from a gi ven set of m different

elements, but with the possibility for every single object

to go back and forth from the given set into any subset.

In this way, there are always m elements available for con-

structing subsets, as every element can be selected

repeatedly again and again.

A form to represent combinations with repeated

nselection is CR
m

Notice then here m -~n, because there are m dis-

tinct objects (a1 #9a 2 7a 3  a. m a) in the given set, each

of them can be indefinitely used for constructing subsets

of length n.

The general formula for combinations with repeated

selection can be deduced using an auxiliary transformation.

Suppose the combinations with repeated selection are all

known and perform the following auxiliary transformation to

every combination:
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auxiliary
transformation

a1alala2a3 . ak<m b1 b1+b 1+2 b2+3 b3+4 b k+(n-1)

~aaaal..,.ap -- bb 4 ib4 b7 3bl bp+
a 3 a 7a11  pm 3 4+1 4+2 7+3 11+4 p+(n-l)

Group Group
[1] [2]

aaaa a a-- bb a1 2 3 5 5 - am - 1 bb2+1 b3+2b5+3 b5+4 "'bm+(n-1)

Using the former algorithm, you have passed to the second

set of elements b (Group 2) by adding consecutive natural

numbers to the subindex of elements a (Group 1):

0 to the a element in the first position of each row

1 to the a element in the second position of each row

2 to the a element in the third position of each row

th

(n-i) to the a element in the n position of each row

nn .

a a1 a a 2 a 9 I k m3 -- blb2bsbb7 ... hk+(n-l)

a3a4a4a7all.. apVm b 3b5b6b10b15 ... bp+(n-l)
Group Group
[11 _ [21

a1 a2 a3 a5 a5 a m 1 b3 b5 b8 b9 b m+(n-l)

57
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I

Passing from Group [11 to Group [21 was performed

using an algorithm that allows one to see a mutual corres-

pondence between every pair in both groups: to each combina-

tion on the left side (with combination repeated selection)

corresponds a combination on the right side (ordinary

combination). Checking the new subindex for elements in

the right side group, the highest subindex of b must cor-

respond to am bm+(n-l) because m is the highest sub-

index in group a and it is allocated the last one; so the

algorithm gives to it the biggest subindex (m+n-l) in

group b.

Therefore, a general formula can be established

CRn =Cn m+n-1)
m m+n-l n

Example. How many different subsets of two coins can be

made with pennies, nickels, dimes and quarters?

CR 2 = C2 2 51
4 4+2-1 = C5 (5-2)!2! = 10 subsets

Section II. Problems

Introduction. This section will present the solu-

tion of concrete problem scenarios in one and two dimen-

sional space using the framework provided by the conceptual

map. The conceptual map is updated in Figure 3 which

includes the general formulas for main and subordinate
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concepts already obtained. Substitutions will be explained

in the third section along with some problems in three

dimensions.

Problem No. 1. Ordinary Variations. "In how many

ways can 3 prizes be distributed to twenty competitors if

each person can receive at most 1 prize" (Eisen, 1969:12)?

Solution. Assume you have been asked to assign people (all

different, of course) to three prizes (different, too).

This is the most general and inclusive concept in combina-

torics (variations), where order is relevant.

Thus,

3 20! 20! 20-19-18 6840 ways
20 (20-3)! 17!

Problem No. 2. Ordinary Variations. "In how many

ways can four letters be put in four envelopes, one in

each" (Eisen, 1969:8)?

Solution. Order is relevant.

4 4! 4! _ 4-3-2"1 _ 24 ways
4 (4-4)! 0! 1

Note that this problem can be solved using ordinary permu-

tations because permutations are a particular case of

variations when m = n.

Thus,
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V P = m!m m

4
V4 = P4 = 4! = 24

Problem No. 3. Ordinary Variations. "How many

different numbers can be formed using the digits 1, 2, 3,

4 if repetitions of the digits are not allowed" (Eisen,

1969:10) ?

Solution. Order is relevant. Length of the numbers (the

value of n) is relevant.

Thus,
1 2 3 4

V + V + V + V

4! 41 41 4!
4 7F+ 4! + 4! + 4

(4-1) ' (4-2) ' (4-3) ! (4-4) !

= 4 + 12 + 24 + 24 = 64 different numbers.

Problem No. 4. Ordinary Variations. "How many

different 3 letter words (with no repetition) can be formed

from the letters a, b, c, d, e, f, g, h which (1) include

the letter e; and (2) do not include the letter e" (Eisen,

1969:13)?

Solution.

1. There are a total of 8 different letters.

Letter e can be fixed in three different places:
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e

e _

e

Order is relevant here, and repetition is not allowed.

Thus, the other seven letters can be chosen in V7 ways.

So,

3 places for Y V2 ways for the other 7 letters

7' 7'

3 =7! 3 - 2! = 3 - 7 - 6 = 126 words
(7-2)! 5!

2. Excluding e, there are only 7 letters, that make

3 7! 7!
V 7 - (7-3)! = 7 6 5 = 210 words.(7-3) ! 4!

Problem No. 5. Ordinary Variations. "How many

distinct 3 digit numbers are there which are even and have

no repeated digits" (Eisen, 1969:16)?

Solution.

The last digit has to be

0,2,4, 0, 2, 4, 6, or 8

6,8

2
If last digit is zero 0 V9

If last digit is 2, 4, 6, or 8
2,4,
6,8

4 x (V - V
9 8

62
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Numbers beginning with 0 are not three digit numbers and

have to be subtracted.

Thus,

V2+4V2 1 _ 1 9! +4 9! 8!
V9  4 - V ) (9-2)! + (9-2)! ( 8-1)!

9! 9' 8'+ 4 (-) -
7! 7!

= 9.8 + 4(9-8-8) = 9-8 + 4.8-(9-1)

= 9.8 + 4-8-8 = 72 + 256 = 328 numbers.

Problem No. 6. Variations with Repeated Selection.

How many numbers of five digits are in the base 4 numerical

system?

Solution. Digits available in base 4 are four: 0, 1, 2,

and 3. Order is relevant. Numbers can be repeated.

Numbers beginning with 0 are not five digit numbers, and

they have to be subtracted.

Thus,

VR - VR = 45 - 4 4 4 4(4-1)
4 4

44 3 = 256 3 = 768 numbers.

Problem No. 7. Variations with Repeated Selection.

(1) How many reversible (symmetrical) numbers with six

digits exist in our decimal numerical system? and (2) Add

them.
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Solution.

1. Symmetrical structure lalbicic ba

Order is relevant. Working with jajbjcj is enough

VR 0  But those numbers starting with 0 are not six digit

numbers; and, therefore, they have to be subtracted.

Thus, 2
2 = l3o2 3 02 02

0 b c VR1 0 - VR1 0  - 10 = 10 (10-1)

= 9 102 = 900 numbers.

2. In order to add these 900 numbers, three steps

are required:

a. Lateral or peripheral columns. There are

only numbers 1, 2, 3, 4, 5, 6,.7, 8, and 9 (no O's). How

many? Each number is equally distributed 900/9 = 100

times. Thus, each number has to be added 100 times,

100 x (1+2+3+4+5+6+7+8+9) = 100 x 45 = 4,500.

b. Intermediate columns. Number 0 appears

here. So, there are 900/10 = 90 times that each number

0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 has to be added.

Thus,

90 x (0+1+2+3+4+5+6+7+8+9) = 90 x 45 = 4050.

5 47c. a b c c b a = a x 10 + b x 10

+ c x 103 + c x 102 + b x 10 + a

64



= 450000000
40500000
4050000

+ 405000

40500
4500

495,000,000 symmetrical numbers

Problem No. 8. Variations with Repeated Selection.

"How many different outcomes are possible when 100 differ-

ent dice are rolled" (Eisen, 1979:9)?

Solution. Every dice has 6 different faces. The order

.9. of presentation of any of such six faces, after every dice

is rolled, is relevant. Each value is repeated 100 times.

Thus,

VR100 = 6100 different outcomes.
6

Problem No. 9. Variations with Repeated Selection.

1. How many numbers with seven digits exist in

our numerical system?

2. How many of those numbers have four 2's and

three 5's? Add them.

Solution. 7

1. 7Order is relevant.

7When calculating VR1 0, all possible seven digit numbers

are obtained, including those beginning with 0, which are

not real seven digit numbers; so, they have to be sub-

tracted.
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Thus,

VR 7  - VR6  =107 _ 106 = 106 (10-1)
10 10

- 9,000,000 seven digit numbers.

m m= 7 -

2. 2 2 2 2 5 5 5

R4 , 3 _ 71!,
PR 7 43! = 35 numbers

For adding those 35 numbers consider that there

are a total of 35 rows to be added; that each row is

composed of seven elements of which four are 2's and three

are 5's.

7 columns

Structure 2 2 2 2 5 5 5
2 5 2 5 2 5 2 35 rows
2 2 5 5 5 2 2 ~rw
255 2 2 5

In every column there are a total of 35 numbers;

these numbers are just 2's and 5's in amounts proportionally

distributed to 4 and 3 respectively. Dividing 35 pro-

portionally to 4 and 3,

# of 2's _ # of 5's _ # of 2's + # of 5's 35
4 3 4+3 7
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*# of 2's = 4 - = 20 twos.7

# of 5' s = 3 35- = 15 f ives.
7

Adding the 35 numbers of any column (without carrying),

20 twos + 15 fives = 20 x 2+ 15 x 5=40 +75

4% 115

The total addition will be

115+11l5 -10 +115 - 10 2 +115-10 4+ 115 -10 5

+ 115 .

= 115 (1 + 10 + 10 2 + 10 3 + 10 4 + 10 5 + 106)

= 127,777,765

Problem No. 10. Variations with Repeated Selection.

"Among the 10 billion numbers between 1 and 10,000,000,000,

% how many of them contain the digit 1? How many of them do

not" (Liu, 1968:6) ?

Solution. Calculate how many numbers do not contain the

digit 1.

0~~1 10 456
W. Among 0 and 9,999,999,999 there are VR 10 91

9

numbers that do not contain the digit 1. Think that, as

repetition is allowed, number 0 plays a basic role when it

V' 67



is conveniently positioned in first place in order to con-

struct all numbers of length <10.

Among 1 and 10,000,000,000 there will be VR 1 - 1

numbers that do not contain digit 1, because now number

0,000,000,000 is excluded, but also because the new

10,000,000,000 does not count here either, because this

number contains digit 1.

Thus, there are VR 10- 1 9 10- 1 numbers that
9

do not contain the digit 1.

The total number of numbers containing the digit

1 is calculated by the difference

1010(VR 10 )= 1 0 0-(9 10- 1)

-10 10 - 9 10 + 1= 6,513,215,600

Problem No. 11. Ordinary Permutations. How many

words can be formed with n different vowels and n different

consonants in such a way that there are not two vowels,

and not two consonants together?

Solution.

____________Order is relevant.

Suppose every line corresponds to a vowel and

every dot to a consonant.
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Permuting vowels: Pn

Permuting consonants: Pn

Every word can begin either with a vowel or con-

sonant.

Thus,

P nx P nx 2 = 2 -(P n) 2

Problem No. 12. Ordinary Permutations. "In how

many ways can 10 men be arranged in a row given that three

particular men must always stand next to each other"

(Eisen, 1969:16)?

Solution.

1 2 3 4 67 78 9 10

fixed

Consider, for example, the block made by the three

elements 5, 6, 7 .This block can be internally

rearranged in P 3 =3! = 6 ways.

Considering this block 5, 6, 7 as one single

element, the whole group is now composed by 8 elements,

which can be permuted in P 8 =8! = 40,320 ways.

Thus, the result is

P 3x P 8 =6 x 40,320 241,920 ways.
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Problem No. 13. Ordinary Permutations. If the

numbers obtained by permuting 1, 2, 3, 4, 7 and 9 are put

in increasing order of value, what position will the number

432917 occupy?

Solution.

5 5 -5
12 1 3 1

Quantity of numbers starting with 1: P =5! = 120
Total

Quantity of numbers starting with 2: P 5= 5! = 120 360

Quantity of numbers starting with 3: P = 5! = 120
5

The total number of numbers starting with 1, 2, and 3 is

360. Now, number 4 is in the first place 141

/4 4

4m 42l

Quantity of numbers with 1 in second place: P 4  4 4!=24Toa
Quanity f nuberswith2 insecod plce: Total4

44

The total number of numbers starting with 41 and 42 is 48.

Now 43 is in first places.

3

41311 1 1 1

Quantity of numbers with 1 in third place: P3 = 31= otal

Now 432 are the three first digits.
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Tota

3, 2> 2

413121 I4131211 141312171

Quantity of numbers with 1 in fourth place: P 2= 2 Toa

Quantity of numbers with 7 in fourth place: P2 = 2 4

P %The total number of numbers starting with 432 is 4. Now

4329 are the four first digits.

1

141312191 4 14131219111

TotalQuantity of numbers with 1 in fifth position: P1 = 1

The last square has to be assigned to number 7.

Thus, the solution is

360 + 48 + 6 + 4 + 1 = 4 1 9th place.

Problem No. 14. Permutations with Repetition.

"How many different words can be formed by rearranging the

letters of the word LNGINEER" (Eisen, 1969:14)?

Solution. There are 3 E's

2 N's

and a total of 8 letters.

Thus, 3 2 5 ! 5.4
~5.. 83!2~ -10 words.83!2! 2

. . . . . . . .



Problem No. 15. Permutations with Repetition.

What is the number of ways of painting 7 different cars

knowing that 2 cars have to be painted in white, 4 in black

and 1 in green?

Solution.

PR2 ,4 ,1  27! = 105 ways.
7 2!4!11

Problem No. 16. Permutations with Repetition.

"In how many ways can three 6's and two 5's be obtained

when five dice are cast" (Eisen, 1969:16)?

Solution.

If three 6's and two 5's have always appeared

(according to the data), the only way tc differentiate

between different results is permuting the order of the

outcomes and eliminating duplication.

Thus,

23,2 5! = 10 ways.
PR -3121 2- was

Problem No. 16. Permutations with Repetition.

"Five distinct letters are to be transmitted through a

communications channel. A total of 15 blanks are to be

inserted between the letters with at 1 kst three blanks

between every two letters. In how many ways can the letters

and blanks be arranged" (Liu, 1968:14)?
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Solution.

space space spac(e space

a =b =c =d =e

There are P5 = 5! ways to arrange the letters.

The number of blanks inserted between every two letters

have to be at least three. One can insert three blanks

(the required minimum amount) in the open spaces, which

would make

4 spaces x 3 blanks = 12 blanks

15 blanks - 12 blanks =3 remaining blanks.

The problem can be readdressed now under the fol-

lowing terms: in how many different ways can three non-

distinct objects be distributed into four boxes?

1 1 1 0 PR3 = -
4 3

2 4!
2 1 0 0 PR 4=-- 12

3 4!3 0 0 0 PR 4 =-j 4

The result is

P 5 (4 + 12 + 4)

-5! x 20 =120 x 20 =2,400 ways.
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Problem No. 18. Permutations with Repetition.

A city has rectangular shape and it is crossed by m streets

going North-South, and by Tn streets going East-West,

including peripheral streets.

In how many ways can we pass from a corner A to its

opposite vertex B without going backwards anytime?

Solution.
m streets

A

* ~n streets Li

B

* For going from A to B, you have to travel, what-

ever route you choose, a total amount of (m-1) + (n-1)

blocks = m + n - 2 constant blocks, of which (m-1) blocks

have to be traveled vertically (v), and (n-i) horizontally

(h).

Those (m-i) blocks in vertical direction have

equal opportunity of selection in the whole city; and

those (n-i) blocks in horizontal direction have an equal

chance for being chosen too.

Thus, a permutation like

v vh vh h... v

means that you have to travel two blocks vertically j~

then one block horizontally -. ,later one block

vertically, then two blocks horizontally, etc.
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So, the solution will be

PR(m-l) , (n-2) = (m+n-2).
(m+2-2) (m-l) !(n-2)!

Problem No. 19. Circular Permutations. In how

many different ways can four people sit down around a

circular table?

Solution.

PC 4 = P4 -1 = P3 
= 3! = 3 • 2 =6 ways.

Problem No. 20. Circular Permutations. "In how

many different ways can four different colored spherical

beads be strung on a string to form a necklace" (Eisen,

1969:17) ?

Solution. Recall that in circular permutations PRm =Pm-

PC4 = P4-1 = P3 
= 3! = 6.

1

4 2 [1]

3

Element 1 has been fixed, for instance, and the

other three beads have been permuted around it. One of

these permutations is, for example,
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1

2-4 [21

3

Because the necklace can be taken in hand and

flipped 1800 in the space, figures [1] and [2] are

the same. Notice that, under this consideration, the

problem is three dimensional. Thus, the result is

PC 4 6P _ 6 = 3 different ways.

Problem No. 21. Ordinary Combinations. In how

many different ways can we put in a row p positive signs

(+) and n negative signs (-), being n < p, in such a manner

that two negative signs should not be together?

Solution.

1 2 3 4 p-i p p+l

As you can see in the above helping figure, there

are (p+l) possible places available for placing the n

negative signs in. Order is not relevant. Thus,

C n  (P+l)p+l n

76

~: ~1



Problem No. 22. Ordinary Combinations. "In how

many ways can a committee of 3 teachers and 4 students

be chosen from 9 teachers and 6 students knowing that

teacher A refuses to serve if student B is a member"

(Eisen, 1969:23)?

* Solution.

3Ways to select teachers: C 9 . Order is irrelevant.

4Ways to select students: C 6 . Order is irrelevant.

Total number of ways to select teachers and

students: C9xC6

But because of the given constraint, those combinations

where A and B appear together have to be deleted, such as

teachers students
(A __ __ ) (B ___)

Eliminating teacher A, ways to select 2 teachers: C 2

Eliminating student B, ways to select 3 students: C35

Total number of combinations to be deleted: C 2x C3
8 5

Thus, the result will be:
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3 4 2 3
C9 xC 6  C8 xC 5

9! 6! 8! 5!
6!3! 2!4! 61.2! 3!2!

= 1260 - 280 = 980 committees.

Problem No. 23. Ordinary Combinations. "In how

many ways can three numbers be selected from the numbers

1, 2, 3, ... , 300 such that their sum is divisible by 3"

(Liu, 1968:9)?

Solution. The 300 different numbers pertaining to the

set (1, 2, 3, ... , 300) can be classified in three differ-

ent subsets:

Subset 1, that groups all the numbers that are divisible

by 3. That means that any number N1 belonging

to subset 1 makes N1= 3. Thus, any three

numbers selected from subset 1 will make

nl1 + n12 + n13 =3 + 3 + 3= 3.

Subset 2, that groups all the numbers that yield 1 as

remainder when divided by 3. That means that any

number N2 belonging to subset 2 makes N2 = 3 + 1.

Thus, any three numbers selected from subset 2

will make:
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n 21 + n22 +223

=(3+1) + (3+1) + (3+1)

=3 + 3 = 3

Subset 3, that groups all the numbers that yield 2 when

they are divided into 3. That means that any

N 3 : 3 + 2; and summing any three of those

numbers belonging to subset 3,

n 1+ n 32 + n 3 3 =(3+2) + (3+2) + (3+2)

+ 6~ +=3

It is obvious that there are LO = 100 distinct numbers
3

in every subset. It is evident too that one number can

be selected from each subset, sum the three numbers, and the

result will be divisible by three also.

N + N + N 3
1 2 3

because

3 + (3+1) +- (3+2) =3 + 3 3

Numbers can be selected using ordinary combinations, where

order is not important.

Thus,
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3 100'
3 numbers from subset 1 - C1 0 0  3!97- = 161,700

3
3 numbers from subset 2 - C1 00 = = 161,700

3 numbers from subset 3 C 3 = 161,700

1 1 1
1 number from each subset - C10 0 x C1 00 x C

1 3 "
(C1 00 ) = 1,000,000

Total different ways:

3 3 3 1 3C 1 0 0 + C1 0 0 
+ C 1 0 0 + (C1 0 0 )

= 3 x 161.700 + 1,000,000 = 1,485,100.

Problem No. 24. Combinations with Repeated Selec-

tion. "Out of a large number of pennies, nickels, dimes

and quarters, in how many ways can six coins be selected"

(Liu, 1968:10)?

Solution. Order is not relevant. Elements can be taken

repeatedly.

Thus,

6 6 6 9!
CR4 = 1 = - 6.3. 84 ways.

Problem No. 25. Lombinations with Repeated Selec-

tion. "If a candy factory manufactures 10 different kinds
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of chocolate and puts them in boxes of 32, how many dif-

ferent boxes can be formed" (Eisen, 1969:25)?

Solution.

32 32 32 41!
10 =1C0+32-1 =41 - 32!9!

= 350,343,570 different boxes.

Problem No. 26. Combinations with Repeated Selec-

tion. "How many divisors does the number 1400 have"

(Liu, 1968:10)?

Solution. Number 1400 will be represented as a product of

its prime factors. The divisors are combinations made

with those prime factors.

3 21400 = 2 52 7

Ways to select factor 2 (maximum three times):

0 1 2 3 01CR0-i CRi-
CR1 1 CR 1  + CR R1  C C1 + 0 1 + 1+1-1

2 C3
+ C1+2-1 + 1+-

+3-

0 1 2 3=1+1+1+1=4= CO  C+C 2 +C=

Ways to select. factor 5 (maximum two times):

0R +R1 2 0 1
CR1 + CR + CR = CO + C + C= 3
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Ways to select factor 7 (one time only):

CR1 + CR1 = 1 + 1 = 2

Notice that factor 7 can be selected two times because

70= 1 and 71 =7 are both considered. Thus, the result

will be,

4 . 3 2 = 24 divisors.

Problem No. 27. Combinations with Repeated Selec-

tion. In how many different ways can a regular tetrahedron

be painted with seven different colors such that each

face is painted with one and only one color?

Solution. A tetrahedron has four faces:

Nr

On a first approach, the solution looks to be

CR 4 = C 4  4 10!

7  7+4- 1  1 10 4!(10-4)!

10!.
= 4!6! - 210 ways. [l]

Solving the problem in four analytical steps:

Step 1: Painting with 1 color, there are

1 7'!

C7 = = 7 colors for painting

7 different ways to
paint the tetrahedron.
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Step 2: Painting with 2 colors, there are

2 =7!.'

C7  25 = 21 pairs of colors for painting

With those 21 pairs, the tetrahedron can be

painted, for example,

1 face red, 3 faces blue
There are 3 different

2 faces red, 2 faces blue possibilities for
every pair

3 faces red, 1 face blue

Thus,

21 pairs x 3 possibilities each

63 different ways to paint the tetrahedron.

Step 3: Painting with 3 colors, there are

3 7!
C7 -3!4 = 35 trios of colors for painting

The four faces can be painted, for instance,

1 face red, 1 face blue, 2 faces green There are
3 differ-

1 face red, 2 faces blue, 1 face green ent possi-
bilities

2 faces red, 1 face blue, 1 face green for every
trio.

Thus,

35 trios x 3 possibilities each

= 105 different ways to paint the tetrahedron.
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Step 4: Painting with 4 colors, there are

4 _ 7!:
C7 !3 35 groups of four colors available

for painting the tetrahedron -,

35 different ways to paint it.

Adding partial results,

7 + 63 + 105 + 35 = 210 was 2

Note that expressions 1 1 aid i :

But a regular tetrahedrorn s thro , .m.. .

body that can be r(%tated , It s ix,-

symmetry and the spto .tat<ir C,: V ::. . :

ent arrangements -)f the ":. i "

selecting a rc.,up ur ':.

a trihedral oontain 'q th, .' s A, .

be color, d i-n two, di c: ,t :r, 4A

A B C or C R A.

Thus, pa intin, wit. ,r >, .. .

produces two dif + ,rent 101. ( , w.....", -

ent arrangements of the same 01 cur 0 s t. it

produce different presentat f.s r th :t.',:

and, consequently, there are 35 x 2 - "0 ,is:

ways to paint the tetrahodr-,r< . Tht.,: tb , -7

result will be

7 + 63 + 105 t 70 = 245 different ways.
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numerator. Those 6 elements can be arranged in P 6= 6

= 720 different ways (denumerators), every one of which

can be interrelated with the numerator. When a particular

relationship, such as (ab c def) is established

the meaning is that

the initial element a should be now substituted by itself

the initial element b should be now substituted by f

the initial element c should be now substituted by d

the initial element d should be now substituted by e

the initial element e should be now substituted by c

the initial element f should be now substituted by b

As one can see, element a is related to itself and,

therefore, it is going to be substituted by itself.

Moreover, the possibility exists that every single element

is related to itself. In this case, the substitution per-

formed is not going to provide a different arrangement.

The name for this type of substitution is the identity

substitution.

* Example. Given three distinct elements a, b, c, a numerator

could be a, b, c, and all possible 6 substitutions (P 3 = 6)

are:
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a b c Identity Substitution

a b c

(a c b )

a b c
b a c

(a b c~
b c a

• a b
"" c a b)

Sa bc
(c b a)

Product of Substitutions. It is important to

define now what is understood by the concept product of

substitutions. What this expression really means is the

result of applying two consecutive substitutions to the

same initial arrangement. For instance, given the initial

permutation M = 1234, if two substitutions A and B, such

that

A 1 2 3) and B = (2 3 44 12 32 1 4 3 )

are consecutively applied to M, the product will be

P A B= (1234 1234 1234
4 1 2 3) (2 1 4 3) = (3 2 1 4
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where

element 1 was substituted by 4 in A, and 4 by 3 in B

element 2 was substituted by 1 in A, and 1 by 2 in B

element 3 was substituted by 2 in A, and 2 by 1 in B

element 4 was substituted by 3 in A, and 3 by 4 in B.

What has been done here is a double substitution.

But be careful, because the product of substitutions do not

obey the commutative law when the two factors A and B have

elements in common. Thus, because factors

A 1 23 4 ) adB 1 23 4
A 4 1 2 3 an 2 1 4 3)

have elements in common, is not the same to multiply A x B

than B x A,

A 12 34 )x 1 2 34 1 2 34
A x B 4 1 2 3) X 2 1 4 3) (3 2 1 4)

and1 23 4 1 2 34 1 23 4

and B x A = x ( )~

2 1 23 412 124345

Example. Given S 1 (3 5 1 254 and T ( 1 2 3)

multiply S x T and T x S

Solution.

S xT 12 3 45 x(12 3 45 1 23 45)
S XT 3 51 2 4 4 41 5 2 3 5 3 341 2
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12345 12345 12345)

T x S = (41523) x (3 5 1 2 4) 2 3 4 5 1

Example. Given

a b c d e a b c d e
= c e a d ) and T = c b d e a

prove that S x T # Tx S.

Solution. Both factors S and T have elements in common.

S x T = b c d e (a b c d e
bc e a d ) x b de a

a b c d e but
b d ace b

T x S= a bc d e x a b c d e

~cb d e a b cead

a b c d e
e c a d b Q.E.D.

Commutable Substitutions. When the product of two

substitutions enjoys the commutative property, that is to

say, when

S x T = T x S,

these substitutions are called commutable. That happens

when both substitutions do not have elements in common.

For example, given
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125 3987
(512 ) and T = (78 9 3)

125 3987 1253987S x T (5127 8 9 3 = 1 2 7 8 9 3);

TxS= (3987 125 39871257 8 9 3) 5 1 2 7 8 9 3 5 12

1253987 3987125S x T = T x S (51 2 7 8 9 3) =7 8 9 3 5 12

Effectively, as S does not have any element of T,

and T does not have any element of S, neither S can

modify T, nor T can modify S. That is to say, for multi-

plying two or more substitutions that do not have common

elements, it is enough to yuxtapose in any other the pairs

of elements which compose all of them. Therefore, the

order of the factors does not change the product.

So far, only ordinary permutations have been

mentioned when the notion of substitutions have been intro-

duced. Recall that ordinary permutations only deal with

different arrangements of the same elements in a row, which

implies there are first and last elements. This is a one

dimensional approach that is not valid when the problem

is pre3ented in two and three dimensions. Thus, a bridge

has to be constructed that allows one to pass from one

dimension (ordinary permutations and ordinary substitutions)

to two dimensional problems (circular permutations and
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circular substitutions) and from two dimensions to three

dimensional problems (cycle index and pattern inventory).

To develop a feeling for such notions, consider

the foilowing problems:

1. One dimensional problem. In how many dif-

ferent ways can three soldiers a, b, and c be arranged in

a column? The solution is obvious, P3 = 3! = 6 ways.

2. Two dimensional problem. In how many different

ways can three persons a, b, and c sit around a circular

table? The solution is easy too, PC3 = P3- 1 = P2 = 2! = 2.

3. Three dimensional problem. In how many differ-

ent ways can three distinct colored beads be strung on a

string to form a necklace? The solution given by PC3

= P2 = 2 has to be divided by 2 because the necklace can

be rotated along its diameter, and permutations

a a

44 bc and b

become identical.

But imagine how difficult it is to visualize three

dimensional problems when, for instance, instead of having

three distinct colored beads, there are n > 3 beads and,

in addition, some of them are repeated. A procedure for

solving these cases will be explained in the remaining

pages of this chapter.
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Circular Substitutions or Cycles. Circular sub-

situtions or cycles are a particular case of ordinary

substitutions, in the same manner that circular permuta-

tions can be considered a particular case of ordinary

permutations.

Given a set of n distinct elements al, a2, a3,

an" a cycle or circular substitution takes place if

every element in the denumerator is exactly the same as

the element to its right in the numerator, and the last

one in the denumerator is the first one in the numerator.

Thus,

al a2 a3 a4 an-i an)

a2 a3 a4 a 5 .. an  a

The following expressions represent circular substitutions

or cycles:

2 3 ( (1 2 3) 223137 2

45 5 4(4 5) 5. 4,
5 4) (4 5)

(6 = (6) 6Identity
substitution

A circular substitution or cycle of length K (number

of elements) can be written in K different ways by

cyclically permuting the elements composing the cycle.
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Here they are, for instance, the 9 equivalent ways to repre-

sent a cycle of 9 elements:

1s 123456789 _

3st (5 2 74 6 1 6) - (1 5 2 8 6 4 9 3 7)

245678912
2nd 28 73 4 6 3 5) 9 = (2 8 6 4 9 3 7 1 5)

* 4567891233rd (9 2 4 1 6 3 5 8 = (3 7 1 5 2 8 6 4 9)

4 56 78 9123
4 th (9 2 4 1 6 3 5 8 7 (4 9 3 7 1 5 2 8 6)

h 567891234
5th (2 4 1 6 3 5 8 7 9) (5 2 8 6 4 9 3)

891234567

7th 7 6 3 5 8 7 9 2 4)6 (7 1 5 2 8 6 4 9 3)

8th 6 3 5 8 7 9 2 4 (8 6 4 9 3 7 1 5 2)

*" 912345678)
9th (3 5 8 7 9 2 4 1 (9 3 7 1 5 2 8 6 4)
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Breaking Down Ordinary Substitutions into Cycles.

Any ordinary substitution (no circular) can be broken down

into a unique product of circular substitutions without

common elements. For example,

123456789 14675 2893
(4 8 2 6 1 7 5 9 3)  4 6 7 5 1 8 9 32

The multiplication cannot be done
because any element in any of these
two cycles is repeated.

1234 567 124 357 6 124 357
24 5 1 7 6 3) 2 4 1 )  (5 7 3) X 6 ) 41 ) x (573)

The reasoning is the same as before.
Notice here that you have the option of
not showing the identity substitution

6*(6) which means that the substitution of

6 by itself is implied.

5127893 512 73 89
1 25398 7 1 25 37 98

73 512 89
= (3 7) x (i 25) x (9 8

89 73 512
(981 x (3 7) x 1 2 5)

The reasoning is the same as before.
Notice here that the product has the
commutative property (the order of the
factors does not change the result)
because the cycles do not have elements
in common.
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In general, given any ordinary substitution (no

circular), it can be represented in product form of factors,

being such factors the circular substitutions into which

the given ordinary substitution can be decomposed. That

is to say,

a 1 a 2 a3 ., b1 b2 b3 " " b2 ..... 9 2 3 ..
a! (2 a 3 a 4 a' e1 b2 b 3 b 4 ""b 1.. 2 3 4"'1

a a a .. a b b b 1 Z Z Z
1 a 3 1 b b1 b b3 1... ..l) 9 2 3 4"'25. 42 3 a4 ...a. b

= (a1 a2 a3 ... a) x (b1 b2 b3 ... b ) X ... X (Z1Z2 .2.3 )

Notice the abbreviated way used in the last expression to

symbolize the circular substitutions or cycles.

It is important to mention at this point a different

type of notation for representing the breaking down of

ordinary substitutions into cycles. For instance,

12 3 4 5 6 7 12 4 3 5 7 6
2 4 5 1 7 6 3) = (2 4 1) x (5 7 3) x6

= (6) x (1 2 4) x (3 5 7)

f f1 1 1 f 2= .. fi fl .fl = fl 3f

1 3 3 1 3

What does fI f2 mean? It is just a brief and condensed way
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to say that the ordinary substitution

12 4 5 5. 6 3) has been broken down into one cycle of

length 1, (6) f fl# of cycles
1 = length of every cycle.

plus two cycles of length 3, ( 12 4 ) ( 5 7 3

f 1 .f1 =f 2 =#of cycles
3 3 3= length of

every cycle.

In general, the expression fP represents that
q

there are p cycles with _q elements each. But notice that

this notation does not tell you anything about the specific

elements that are interrelated. You lack information here.

The only thing that you know is the general cyclical struc-

ture of an ordinary substitution.

The Cycle Index. Imagine an equilateral triangle

that has its three vertices numbered with one different

number each. Suppose you are a statical observer who

stands just in front of one of the triangle faces. You

are seeing a particular arrangement of the three numbers

at this starting moment, such as

2 3

At this point, the triangle is static. But later

on, the triangle is going to start rotating around itself,

symmetrically, around its axes or points of symmetry.
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Every time the triangle completes any of those symmetrical

movements, you would like to compute how many different

configurations, or distinct arrangements of the numbers,

you have seen. This is done in order to be able to tell

at the end, when all possible rotations have been performed,

the total amount of distinct arrangements of the vertices

that have appeared during the whole process.

The theory of substitutions will play a funda-

mental role here for tracking in the space the position

of the three vertices (three numbers) with respect to its

initial positions.

The initial position of the vertices is given when

the triangle has not yet started any movement. Thus, no

rotation, initial position and identity substitution go

together. 1

2 3

1 23 1 2 3 ()()3)=f3
12 3) 1 2 ~ 3) 1 2 3

* Later on the equilateral triangle is flipped 1800 around

the three axes going through vertices 1, 2, 3 and through

the center of the respective opposite edges. Thus,
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1 31

1 3

2' 3 3

1 23 1 2 311
(.~9 =(1) (213) =f' f 1

13 2 1 2 3 1 12

1 2

23 1 3

1 23 3 1 2 1 1
1 3 () ~ 1 =(3) (1 2) f f

When the three rotations are over, it can be said that the

three have the same structure f 1 f' in the sense that the
1 2

three ordinary substitutions can be expressed by the pro-

1
duct of one cycle of length 1 I'f9 by one cycle of length

1
2 (f) As the same thing happens three times, the general

structure for the three 180' rotations together will be

3f 1f I
1 2

Notice again that with this notation you arc,

losing information, because such notation, by itself,
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does not show the specific vertices that are cyclically

*interrelated. A solution for clarifying such temporal

lack of clearness will be given by the pattern inventory.

The equilateral triangle can also be rotated

around its center of gravity, 1200 - 3600 three times
3

13 2

2 \3 1 2 3 1

This is what the spectator can see after every rotation has

finished:

after first 1200 rotation, (1 2 3 (1 3 2) = f 1 and

after second 1200 rotation = 2400 total rotation,

123 1
(2 3 1 = (1 2 3) = f 3 "

As it has been analyzed, the static spectator has

rotated the equilateral triangle around all its axes (or

points) of symmetry. The 6 total number of rotations per-

formed have produced the following configurations:
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2. (1) (2 3) f f1 f12

(2) (1 3) f f1 fi 3f1 fi
1 2 1 2

(3) (1 2) f f1 f 1
1 2

3. (1 3 2) f 1

2f3

(1 2 3) f

Total number of rotations performed =6

By definition, the cycle index is a division which

the denumerator is the total number of rotations performed,

and the numerator is the sum of all the arrangements that

have appeared after all rotations have finished.

The cycle index for the equilateral triangle

will be:

3 1 1
f~ 1 " f1 f2 + f3

6

The cycle index is a very abstract formula that compiles

cycles, but, as a chrysalis, it explodes plenty of mean-

ingfulness when the pattern inventory notion is applied to

it. So, what will be the value of the cycle index? The

cycle index will be the base for counting how many different
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configurations, with respect to the initial one, the static

observer sees when the body has been rotated around all its

axes of symmetry.

The cycle index is, in a certain sense, the unit

because it is a fraction whose numerator and denumerator

represent the same quantities. The denumerator is just the

number of total rotations performed, and the numerator pro-

vides a picture of the different types of substitutions

found during the rotations. That is why

Cycle index
for quiaterl =6 ordinary substitutions
triangle6 rotations performed

tri11l

_1 substitution 1 + 3substitutions f 1 f21 + 2 substitutions f31

A 6 rotations performed

The Pattern Inventory. Any ordinary substitution

can be cyclically represented by mean of a product of

circular substitutions. As far as the equilateral tri-

angle is concerned, it has been already proved that:
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Cycles of
Rotations Substitutions the Vertices Condensed Form

00123 1
0 1 2 3) = (1) (2) (3) = f3

123 11

1800 (1 3 (1) (2 3) = flf 2

1 23 1 11

180 (3 2 3 = (2) (1 3) = fl f 3fl f

1800 1 

1801 3) = (3) (1 2) = flf2

S1 23 1

120(3 1 2)  = (1 3 2) = f1

2f1

2400 1 2 3 1123)=f
2 3 1 = ( 2 3) =3

f3 +3f 1f 1 2 f

Cycle Index f1 + 1  2fl

for Equilateral Triangle 6

One time that the cycle index has been calculated,

each of those abstract terms fP=# of cycles
q=length of each cycle

is replaced by the called pattern inventory. Thus,

fp (x q + yq + zq + ... )P,
q

being x, y, z, ... etc., the different variables playing

a role in the specific problem to be solved. For instance,

if the problem consists of calculating in how many differ-

ent ways can 6 beads (1 red, 1 green, 4 yellow) be attached

to the vertices of a regular hexagon, the variables are

three (red, green, yellow).
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Application Problems.

Problem No. 1. In how many different ways can

the vertices of an equilateral triangle be painted if

three different colors (a, b, c) are available, and

repeated selection of the colors is allowed?

Solution. The cycle index is 1fl + 3f f2 + 2f').
6 1 1f2 +2 3)

There are three variables (a, b, c), so the replace-

ments to be performed in the cycle index, in order to obtain

the expanded cycle index are:

f3 (a + b + c) 3

1

f f2 3(a + b + c) - (a 2 + b + c 2

2 1 2(a3 + b3 + c32 " f3

That means,

Expanded Cycle Index (a+b+c)3+3(a+b+c)(a 2 +b2+c 2 + 2 (a3 +b3 +c3
for the Equilateral 6
Triangle

The pattern inventory terms can easily be solved:

Term (a+b+c)3  3! aX bc y  (Leibniz' Formula)

a+3+y = m = 3; n 3
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Values for a, a,y
3 3 3

m= 3 = 3 + 0 + 0- a ,b , c

a.2b 2 b2a b2 2 c2b
m= 3 =2 + 1 + 0 ab, a c, ba, bc, c a, cb

m = 3 1 + 1 + 1 - abc

(a+b+c) 3 = 3! (a 3+b 3+c 3 ) +3 (a 2b+a2c+b2a+b2c+c2a+c2b)3!0!.0!. 2!1!0! (

+ !i!i! (abc)

a 3 +b3+c 3+3(a 2b+a 2c+b 2a+b 2c+c 2a+c 2b) + 6 abc.

Term 3 x (a+b+c)(a 
2+b 2+c2 ) = 3 (a3+b 3 +c3

+ 3(a 2b+a 2c+b 2a+b 2c+c 2a+c 2b).

Term 2 x (a 3+b 3+c 3 ) = 2(a 3+b 3+c 3 ).

-S Adding the three terms and dividing by 6,

Expanded 6(a3 +b 3+c ) + 6(a2b+a 2c+b 2a+b 2c+c 2a+c 2b) + abcCycle =6

Index

= a3+b 3+c3 +a2 b+a 2c+b 2a+b 2c+c2 a+c2 b+abc.

There are '0 terms here. Thus, there are 10 differ-

ent ways of painting the vertices of the equilateral tri-

angle with repeated selection of colors:
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Vertex 1 Vertex 2 Vertex 3

Ist a a a

2nd b b b

3rd c c c

4th a a b

5th a a c

6th b b a

7th b b c

8th c c a

9th c c b

10th a b c

A consideration for computing the number of differ-

ent ways of painting the vertices of the equilateral tri-

angle using the

Expanded 333222222
Cycle = a +c +a b+a c+b a+b c+c a+c b+abc,
Index

is the following:

As a, b, and c can be equally pondered, because

the three different colors a, b, and c are used the same

amount of times, it is convenient to make a = b = c = 1

in order to obtain a value for the expanded cycle index.

Thus, this value is 10, which indicates that there are 10

different ways to paint the equilateral triangle, using

three different colors, when repeated selection is allowed.
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J The question that immediately occurs is why does

the replacement of the pattern inventory into the cycle

index produce such a result. The explanation will be given

in the following paragraphs. Such explanation will be

provided along with the resolution of several problems.

As the explanation of those typical problems is given,

everyone should be able to understand why the pattern

inventory is a convenient albegraic expression that

usually drives one to have to multiply two or more poly-

nomials, all containing the same variables. The result of

that convenient multiplication produces all possible com-

binations of those variables, the variables of the particu-

lar problem to be solved.

Why has f 3 be en replaced by (a+b4c) 3? Recall that

fmeans that there are three independent vertices,
1

(1) (2) (3); each one is a cycle by itself:

l 2D 3D

These three vertices (1, 2, 3) have to be painted with

three different colors (a, b, c) that can be repetitively

selected. Representing the vertices by three independent

boxes jthey can be painted

3 3 3 2 2 2 2 2 2a , b , c ;a b, a c, b a, b c, c a, c bD; abc.

S0 6



3
a indicates that the three boxes are painted with color a.

a 2b indicates that two boxes are painted with color a, and

the other box with color b.

abc indicates that every box is painted with a different

color.

Table 1 shows the assignments of colors (a, b, c) to

vertices (1, 2, 3). Referring to Tablel, onecan see the

result is a3+b3+c 3+3 (a 2b+a 2c+b 2a+b 2c+c 2a+c 2b) + 6abc,

exactly the same result as was gotten by the development of
4- 3

the term (a+b+c) using the Leibniz formula.

Analytically it has been proved why fl was

3
replaced by (a+b+c) Now, the question is similar: why

11 2 2 2
3f f

3f1 f2 was replaced by 3 (a+b+c)(a +b +c )?
1 1

Recall that 3fl f means here that when three 1800
12

rotations were completed around three homologous axes of

symmetry, the spectator saw three different arrangements

of the three vertices, each of them broken into two

disjoint cycles; that means, into two cycles with no common

elements.

Graphically,

-3
(1) (2 3) 2

Ifl -f-- 3
3f f (2) (1 3) 2 1

1 2

(3) (1 2) 3 1 ; 7J
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TABLE 1

ASSIGNMENTS OF COLORS (a, b, c) TO VERTICES (1, 2, 3)

1 2 3

3 3
a a a a a

b3  b b b b3

3 3
C C C C C

a2b a a b

a2b a b a 3a2b

a2b b a a

2a c a a c
2 2

a c a c a 3a c
2a c c a a

b2a b b a

b2a b a b 3b2a
2

b a a b b

2b c b b cb2 2
bc b c b 3b2c
2b c c b b

2
c a c c a

2 32
c a c a c 3ca

2
c a a c c

c2b
cb c c b

c b c b c 3c2b

c2b b c c
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TABLE I--Continued

12 3

-J7

abc a b c
abc a c b

abc a b C 6b
abc c b a

abc a b a

abc a c a
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Representing the vertices by three boxes, one

independent box E , two dependent and joined boxes

LJ_ , they can be painted in this way:

3 3 3a, b,c;

2 2 2 2 2 2
ab , ac ; ba , bc ; ca , cb

where
3

a means that the three boxes are painted with the

same color a.

ab 2 means that one box is painted with a and the two

joined boxes with the same color b.

Notice that the joined boxes = are always

painted both with the same color (aa, bb, cc). That happens

because the circular substitutions or cycles

2 3 1 3 1 2

imply that the first color that is given to any vertex

included into a cycle is cyclically transmitted to the

other interrelated vertices. Thus, the color assigned in

the first arrangement to vertex 2, when the triangle is

f I ippd around its height

r)ver *he side 2 3, 1

/3

/

- , ' . . : .
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The color assigned to vertex 2

is reassigned to vertex 3,V..\
and vice versa.

3 2

Table 2 shows all possible assignments of colors

(a, b, c) to the vertices (1, 2, 3). The table result is:

3(a 2+b 2+c 2 ) + 3(ab 2+ac 2+ba 2+bc 2+ca 2+cb ,

exactly the same result as was gotten by the development

of the term 3 x (a+b+c)(a 2+b 2+c2

Analytically it has been proven why 3f 1f1 was
1 2

replaced by 3(a+b+c) (a 2+b 2+c) . Similarly, the question133

now is why 2f was replaced by 2(a 3+b 3+c 3).
3

Recall that means here that when two consecu-
Ra3

tive 1200 rotations were completed around the center of

gravity of the triangle, the spectator saw two different

arrangements of the three vertices, each of them is cyclical.

Graphically,

2

1 (1 3 2)
2f

2f3 (1 2 3) 2

3e
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TABLE 2

ASSIGNMENTS OF COLORS (a, b, c) TO VERTICES (1, 2, 3)

1 2 3

3
a aa a

b bb b3

3
C Cc C

a bb ab 2

2
a cc ac

b aa ba2

b cc bc 2

2
c aa ca

c bb cb 2

2 1 3

3
a aa a

b bb b

3
C CC C

a bb ab 2

2
a cc ac

b aa ba 2

b cc bc 2

2
c aa ca

c bb cb2
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TABLE 2--Continued

3 1 2

3a aa a

b bb b 3

3
C CC C

a bb ab2

2
a cc ac

b aa ba2

b cc bc2

2c aa ca

c bb cb2
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Representing the vertices by three joined boxes

_____ and Em , these boxes can only be painted

aaa aaa 2a3

bbb bbb 2b3

ccc ccc 2c3

The reason why only one single color can be seen every

time the triangle is rotated is because of the cyclical

structure of the vertices.

2 2

1 3 1 /

For instance, if color a was given to vertex 1 in the first

assignment, when the triangle is rotated 1200 around its

center of gravity, the same color a goes to vertex 2.

a

a a

And when a new rotation of 1200 is performed, the same

color a goes to position 3. Therefore, it has been justi-

1 33 3fied why 2f3 was replaced by 2(a +b +c
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On the other hand, it is interesting to remember

that the cycle index is really the unit,

3 i11
Cycle Index 6-f o +3f1 f2 +2f3
for Equilateral = 6 ordinary substitutions =

Triangle 6 rotations performed 6

9, 1+3+2=6

At this point it should be clear in a general way,

why the terms of the condensed cycle index expression is

properly replaced by the pattern inventory

fP really means (aq+bq+...+zq)p

q

because developing the p power of the polynomial

(aq+bq+.. .+zq)p by the Leibniz Formula

! P .! (aq (bq) ... (zq)

a+ + ... + p

the different factors (a bq , ... zq) involved in every

term of such development always have the required length

q of the p cycles. Additionally, there are always p fac-

tors or cycles in every term, because a + S + ... + = p.
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Problem No. 2.

1. Calculate the cycle index of a regular hexagon.

2. In how many different ways can 6 beads (1 red,

1 green and 4 yellow) be attached to the vertices of the

regular hexagon?

Solution.

1. Cycle index. No rotation. Initial position.

Identity substitution.

2 1

306

4 5

1 2 3 4 5 6)  (1)(2) (3) (4) (5) (6) = f6 = # of cycles
1 = length of each

cycle

Rotating 60 =3600 around its center of symmetry,
6

2 1 1 6

3 \ O 6 205

4 5 3 4
123456 11 2 3 4 5) = (1 2 3 4 5 6) = f

Rotating 120' around its center of symmetry,

2 1 6 5

3 C) 6 1 4

4 5 2 3
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123456 _153 264_(5 6 1 2 3 4) 15 3 I ) 16 4 2 ( = (1 5 3) (2 6 4)

5~~~1 2

f1 f = f2
3 3 3

Rotating 1800 around its center of symmetry,

2 1 5 4

3Q 6 6 3

4 5 1 2

12 3 4 5 6 14 2 5 3 6 3
(4 5 6 1 2 3) (4 1) 5 2 6 3) 2

Rotating 2400 around its center of symmetry,

2 1 4 3

306 502

4 5 6 1

12 3 4 5 6 135 246 11 2= f2
(3 4 5 6 1 2 )  = (3 5 ) (4 6 2 )  = f 3 3

Rotating 300 around its center of symmetry,

2 1 3 2

3. 6 4 1

4 5 5 6
123456 112 34 561) =f6

23 4 5 6 1j 6
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Rotating 1800 around the axe that goes through vertices

1 and 4,

2 1 6 1

3 06 5 02

4 5 4 3

123456 1 4 26 35

1 6 5 4 3 2 )  ( (4) (6 2 (5 3)

(1) (4) (26)135) = f f =ff 2f 2

'~o1 2~' = 1 2 1 2

Rotating 1800 around the axe that goes through vertices

2 and 5,

2 1 2 3

306 104

4 5 6 5

(123456 2 5 1 3 46
3 2 1 6 5 4) = (5) (3 1 (6 4)

(2) (5) (13) (46) = f 1 fl1 1 f 2 f 2
112f2 1 2

Rotating 1800 around the axe that goes through vertices

3 and 6,
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2 1 4 5

--30 6 3 0 6

4 5 21

123456 3 6 1 5 24
54 321 61 = (3) 1 (5 1 (4 2 )

54322

=(3) (6) (1 5) (2 4) f flflff f f2

Rotating 180' around the three axes going through the middle

points of opposite edges,

21 1 2

3 6 6 3

4' 5 5 4

123456 12 45 3
2 6 5 4 3) = (2 1 1 4) (1 2) (36) (4 5) = f2
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2 1 3 4

"' 3 0 6 2 5

4 5 1 6

123456 14 23 56
(4 3 2 1 6 5) (4 l (3 2) 6 5) = (14) (23) Thi

2 1 5 6

3 -- 6 4/ \

0/
4 5 3 2

1 2 3 4 5 6 16 25 34
6 5 4 3 2 1 )  (6 1 15 2 ) (4 3)

Total of rotations performed: 12 rotat 1, :

Types of circular substitutions or cycles made .:.

12 rotations: f + 2f + 2f + 4f 3t -,
1 6 3 21, 2 :in:i

Thus, the cycle index is

f .2f + 22 4 3
Cycle Index for 1 2t 6 26
the Regular Hexagon 12

2. Pattern inventory. There arc2 thrc variables

in this problem:

a. red boad
b. green bead
c. yellow bead
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Thus, the pattern inventory function will consist

in the replacemc- of the following convenient expression

into the cycle index formula,

fP (a q + b q + c q p

q

Cycle Index =- 1 6 + 1+ 2 + 3 f 2 f2

for the Hexagon 1-2 l 2f 6  3 2 1 2

S.

Expanded Cycle Index = 1 1 [(a+b+c)6 + 2 6(a 6+b6+c 6

for the Hexagon 1c2

+ 2(a 3+b 3+c 3) + 4(a 2+b 2+c2)

2 2 232

+ 3(a+b+c) 2(a 2+b 2+c 2 ) 2

The development of the whole expanded cycle index

produces a result valid for attaching beads to the vertices

with repeated selection. But in this problem there is no

chance for repeated selection. So, the only valid struc-

4
ture for this problem is ab c (1 red bead, 1 green bead,

and 4 yellow beads).

The term f6 = (a+b+c)6 produces the structure

a bc 4 whose coefficient can be obtained applying the

Leibniz Formula,
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w6 6! a Q
(a+b+c)6= Z !.y a b c

m = 6 = a + + y ; n = 3.

For a = 1, = 1, y = 4,

6! 1al1 446! abc = 30 abc 4

161!4!

The terms 2f = 2(a 6 + b 6 + c 6),
6

2 3 3 3122f 3  2(a + b + c ) ,and

3 2~ b 2  2 3
4f 3 4(a + + c )

2

4
do not produce the arrangement ab c

22= 2 2 22

The term 3f2f 2 = 3(a+b+c) * (a 2+b 2+c)

122

= 3(a 2+b 2+c 2+2ab+2ac+2bc)

x (a 4+b 4+c4 +2a2 b 2+2a2 c 2+2b2 c 
.

From this expression it can be deduced that

4 4
3 2ab c = 6abc

Replacing t-hese two values in the expanded cycle

index,
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Expanded cycle index = 1 4 4
for regular hexagon i 12 (30abc + 6abc +.......

= 12 (36 abc + .......
4 1

= 3 abc4 1 rest of arrangements.

Thus, the solution is 3 different ways. The same solution

can be graphically observed

Solution: 3 different
arrangemen t s

The reader's concern should be focused again in

knowing why the pattern inventory works. Why f was
1

replaced by (a+b+c) ?

Recall that f6 signifies that there is a decomposed

ordinary substitution into six circular substitutions with

no elements in common,
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The six beads have to be assigned, one to each box.

In how many ways can they be assigned?

PR 1 ,1'4 
- 6! - 3

6 1!1!4! -3

This expression and solution are both identical to those

obtained using the Leibniz Formula,

!4 a 1b 1c 4= 30 abc4

The logical question to ask next is why f1was
6

6 6 6
replaced by (a + b + c ).The reasoning is always the

1
same: what does f6mean? A circular substitution of

length 6.

if f is a cycle, the same initial colored bead
6

that was assigned to its first cyclically linked vertex

will be repeated through all the six concatenated vertices.

That implies that the six boxes should receive the same

colored beads (a, b, c):

6
a aa a aa -a

b bb b bb -b
6

c cc c cd -C

124 f
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But a constraint in this problem is that there are

not six equally colored beads, and repeated selection is

not allowed either. Therefore, this computation does not

serve any purpose.

Another question that should be asked is what is

the rationale for the transformation

2 2 -- 2 (2+b2+2 ) 2
3ff 2  b 3(a+b+c) (a +b +c

1 2

Here there are three ordinary substitutions broken down

into circular substitutions or cycles.

(1) (4) (26) (35) -

(2) (5) (13) (46) 3f 2Ff1

4' (3) (6) (15) (24) -

Beads a, b, and c can individually go into the

single independent boxes. Paired beads aa, bb and cc,

identically colored, have to go into the joined boxes

because of their cyclical condition. Thus, the product

2 2 2 2 2

3(a + b + c) 2 (a 2 + b 2 + c )

= 3(a 2 + b 2 +c 2 + 2ab + 2ac +2bc) (a 4 +b 4 +c 4 + 2a2 b

2 2 2 2
+ 2a c +2b c

S3(a 6+a2 b 4+a2 c 4+2a4 b 2+2a4 c 2+2a2 b 2c 2+...)
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provides all possible combinations of assignments. For

instance,

a a a a a a
a a b b b b
a a c c c c
a a a a b b
a a a a c c
a a b b c c
b b a a b b
c c a a c c
b b a a a a
c c a a b b
b b a a c c
•........,....... ...

e.....................

In the problem, the constraint is

1 bead of red color

1 bead of green color

4 beads of yellow color

and the variables are the three colors

a = color red

b = color green

c = color yellow

Therefore, not every combination of those given by the

expanded cycle index can be accepted. Valid replies are

1 14 4only those satisfying the constraint a b c a b c
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Problem No. 3.

1. Calculate the cycle index of a regular tri-

angular prism.

2. Calculate in how many different ways two

distinct colored beads (a and b) can be attached to the

vertices of the regular triangular prism.

Solution.

1. Cycle index. No rotation. Initial position.

%Identity substitution. 2

3Z I

1 23 4 56 1 2 3 4 5 6 6 4
12 3 4 5 6 (1 2 (3) (4) (5) 6

= (1) (2) (3) (5) (5) (6) f

Rotating 360 1200 around a vertical axe that goes
3

through the center of symmetry of both triangular faces,
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2
i/

3/ 1 91 3

6 j 4 5 6

12 3 4 5 6 13 2 4 6 5 2
3 1 2 6 4 5) (3 2 1) (6 5 4) (1 3 2) (4 6 5) =3

Rotating 2400 around a vertical axe that goes through the

center of symmetry of both triangular faces, 3

i, 2

,!jx /
4 L---: 5123456 123 456_

(2 3 1 5 6 4) 2 3 1) (5 6 4 (1 2 3) (4 5 6) = f2

The prism also has three horizontal axes of symmetry going

through the middle point of each rectangular face to the

middle point of the respective opposite edge.

Rotating 1800 around the horizontal axe that goes

through the middle point of the face, 2365 to the middle

point of edge 14,
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1 
6

5 4

I *'/3-,

6- '4 2 1

12 3 4 5 6 14 2 6 3 5 3
4 6 5 1 3 2 = (4 1 ) (6 2 ) (5 ) = (1 4) (2 6) (3 5) =2

Rotating 1800 around the horizontal axe that goes front the

middle point of the face 1254 to the middle point of edge

36, 2 4

3 165

,'5, * ',

6 / 4 3 2

123456 15 24 36 (1 5) (2 4) (3 6) 3
5 4 6 2 1 3) ( 1 ) (4 2 ) (6 3) 2

Rotating 180* around the horizontal axe that goes from the

middle point of the face 1364 to the middle point of

edge 25,

2/5

3 11l 4 6-2

6 1 3
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5 4 3 2 5~ 6 16 l 2~ (4 34) - (1 6) (2 5) (3 4) =-

There are a total of 6 rotations performed, which produce

* the following structures:

f+ f 2+ f 2+ f 3+ f 3+ f 3= f + 2f 2+ 3f3
1 3 3 2 2 2 3 2

So, the cycle index for the regular triangle prism

f6 + 2f 2 + 3f 3

1 3 2
6

* Recall here again that the cycle index is really the unit

becus f6 + 2f 2 + 33haonly a symbolic value for indi-beaue 1  3 2ha

cating the interrelation between the original and final

situations of the six vertices. Thus, the cycle index

condenses the following information.

1 time (1) (2) (3) (4) (5) (6)

+ 1 time (132) (465)

1 + 1 time (123) (456)

+ 1 time (14) (26) (35)

+ 1 time (15) (24) (36)

+ 1 time (16) (25) (34)
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-~~ Later on, w.hen~ the cycle index is expanded accord-

ing to the specific number of variables playing a role in

V the given problem, one has to compute the different

arrangements of those variables into all the cycles men-

tioned in expression (1]1. Graphically, those arrangements

of variables represent a problem equivalent to the one con-

sisting in filling, with repeated selection, the following

*4 boxes:

f 6

f f2

f. 3

f 32

The constraints in solving this problem are:

1. Repeated selection of the two colored beads

is not allowed.

2. The joined boxes represent cycles, and there-

fore the same type of colored beads have to fill them.
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2. Pattern inventory. There are three variables

in this problem:

a. color a

b. color b

c. no color c

Thus, the pattern inventory function will consist

of the replacement of the following convenient expression

into the cycle index formula,

fP (a + b + c
q

Cycle index for f1 + 3f 

the regular tri- =

angular prism 6

Expanded cycle 6 3 3 32 2 2 23
index for the (a+b+c) +2(a +b +c )2+3(a +b +c
regular tri- 6
angular prism

The development of the whole expanded cycle index

produces a result valid for attaching colored beads to the

vertices with repeated selection. But in this problem

there is no chance for repeated selection because there

are only two beads available. Thus, the only valid struc-

ture here is ab c4 (1 bead of color a, 1 bead of color b,

and three vertices with no beads).

The term (a+b+c)6 produces the structure

4
ab c , which coefficient can be attained applying the

Leibniz Formula,
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4'6 6' 4 4
(a+b+c) = E 6: a:abc = 30 abc

1!1!4!

1+1+4=6

The rest of the terms within the cycle index,
2f2 33 2(32 + 2 23

2f 2 = 2(a3 + b3 + c3)
2 and 3f 2 =3(a + c)

3 2

do not produce the structure abc obviously. The value of

the expanded cycle index will be something like:

1[ b 6 + c6 + 30 abc4 + ...+2(a 3 +b 3 +c 3 )2 +3(a 2 +b 2 c

from where the only valid solution, that accomplishes the

constraints, is taken,

1 44- • 30abc = 5abc4

Thus, the solution is 5 different ways.

The same solution can be graphically computed:

5 a a a aa

b -b

ib

b b/ / A
.t ' "I -b I

Solution: 5 different ways
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Problem No. 4. "Find the number of ways of paint-

ing the four faces a, b, c, and d of a isosceles tetra-

hedron with two colors of paints, x and y" (Liu, 1968,

150).

Solution. D

c b

a d

Explanation about the initial presentation of the tetra-

hedron according to the spectator point of view:

Face a is located just in front of the reader.

Face b is located at the back right hand side of

the pyramid.

Face c is located at the back left hand side of

the pyramid.

Face d is the base of the pyramid.

Faces a, b, and c are equal; face d is not.

Notice, on the other hand, that the isosceles

tetrahedron only has one axis of symmetry that vertically

goes through vertex D on the top and the center of gravity

(baricenter) of the opposite face d at the base. That axis

of symmetry is superimposed on to the pyramid height.

During rotations face d will remain in its initial place.
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1. Cycle index. No rotation. Initial position.

Identity substitution.

a b c d a b c d 4( a b c d )  -- (a (b (c (d (a) (b) (c) (d) = f

3600Rotating 1200 = around the tetrahedron height,

b b. a

a d cd

a b cd a cb d 1 1
db = c b a () = (acb) (d) = f f

Rotating 2400 around the tetrahedron height,

cb a- c

a 'd b d

a b c d a b c d 1 1
c a d) = b c a ) ( = (abc) (d) = f f

Total of rotations performed: 3 (cycle index denumerator).

Types of circular substitutions or cycles made with those

3 rotations:

4 1 1 1 1 4 1 1 cycle index
fI + f3 1 f3 f1 f1 + 2f1 f 3 (numerator)
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Thus, the cycle index is

Cycle index for f4 + 2f f
the isosceles 1 1 3

tetrahedron 3

2. Pattern inventory. There are two variables

in this problem:

a. color x

b. color y

and both colors can be chosen with repeated selection.

Notice the difference with the regular triangular prism

problem, where there was not any chance for repeated selec-

tion, and the number of variables was three (color a,

color b, no color).

The pattern inventory function will consist in the

replacement of the following convenient expression into

the cycle index formula,

fP - (x q  + yq)o

q

4 1 1
Cycle index for f + 2fl f3
the isosceles 1
tetrahedron

1 4 33
[(x+y) + 2(x+y)(x +y 3 )]
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1 - [(x+y) 2(x+y) 2+2x 4+2xy 3+2x 3Y+2y 4

1 2 2 2 4 3 3 4
Hx+y +2xy) +2x +2x y+2xy +2y

1 . x +y 42x2y 2+x2y 2+x3y+4xy 3+2x 4+2x 3y+2xy 3+2y4

1 ~ (x 4+2x 4+4x 3y+2x 3y+2x 2y 2+4x 2y 2+4xy 3+2xy 3+y 4+2y4

= 1- (3x 4+6x 3y+6x 2y 2+6xy 3+3y4

= X4 + 2x 3 y + 2x2y 2+ 2xy3+ 4

There are here 8 possibilities of painting the

four faces of the pyramid with repeated selection:

Face a Face b Face c Face d

1st x x x x

2nd x x x y

3rd x x y x

4th x x y y

5th y y x x

6th x y y y

7th y y y x

8th y y y y
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The same result is obtained adding the coefficient

of [1]:

1 + 2 + 2 + 2 + 1 = 8.

Problem No. 5. "Find the distinct ways of painting

the eight vertices of a cube with two colors x and y"

(Liu, 1968:151)

Solution.

1. Cycle index. No rotation. Initial position.

Identity substitution.76

5
8

3 2

1 2 345 6 78 1 2 3 4 5 6 7 8
12 3 4 5 6 7 8 1 2 ~ 3) (4) 5 6 (7) 8

(1) (2) (3) (4) (5) (6) (7) (8) f 8

1I

Three 1800 rotations around axes connecting the centers

of opposite faces,
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7' 6 8

5 6

4 ( 1

1 345678 13 24 57 68
(3 4 1 2 7 8 5 6~ =3 1 (4 2 (7 5 ~8 6

- (13) (24) (57) (68)
2

4 17 6

12345678 16 25 37 47(3 1 2 5 6 )  3 )  (4 2 )  5 )  (8 6)4

65 8 7 2 1 4 3) 6 1 5 2~ 8 3) (7 4)

4
- (16) (25) 38) (47) = 2

7 6 2 3

8 Z:15/
6 7

3 2

1 8

12345678 (18 27 36 45
8 7 6 5 4 3 = 8 1) (7 2)  16 3) ( 4)

- (18) (27) (36) (45) = f4
2

There are 3f4 cycles.
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Six ± 900 rotations around lines connecting the center of

opposite faces,
8 588 7

I, Z 75 -

4 , 13 4 1 2

12 3 456 78 14 3 258 76 2
(4 1 2 3 8 5 6 7) =(4 3 2 i ) 1 7 6 5) = (1 4 3 2) (5 8 7 6)= f

1i23 4 5 6 7 123 45 6 78 2
23 4 1 6 7 8 ) = (2 3 4 l) (6 7 8 5) = (1 2 3 4) (5 6 7 8)= f

7 6 3 2 8 5

I 1::

577 .. -6. 43

----V "__- 3 2
4 1 8 52

1 234 5 678) (156 2 348 7 2

4 3 4 2

51 24 8 6 2 3 16 2 (4 8 7 3) = (1562) (3487)= f 4

1 2 3 4 5 6 7 8 1 2 6 5 3 7 8 4 f2
2 7 3 1 6 7 9 (788 4 3) = (1265) (3 78 4)=
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7 6 3 7 6 2

8 4 8 5 i33 L I7
-2 -2 6 --73

4 1 1 5 8 4

12345678 1584 2673 2
5 6 2 1 8 7 3 4) = (58 4 1 6 7 3 2 = (1584) (26 73):f 4

1 2 3 4 5 6 7 8 1 4 8 5 2 3 7 6 (1 485)(2376) 2
(4 3 7 8 1 2 6 5) (4 8 5 1 (3 7 6 2' (4

There are 6f24 cycles.

Six 1800 rotations around lines connecting the midpoint of

opposite edges,

7 6 2

8 4

3 )

4 1 8 7

1 2 3 4 5 6 7 8 1 7 2 6 (3 5 4 8
(7 6 5 8 3 2 1 4) = (7 1) (6 2)  5 3 (8 4)

= (17) (26) (35) (48)

4f f2

There are 6f2 cycles.
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Eight ±120' rotations around lines connecting opposite

vertices (the diagonals of the cube)

7 6 2 __1

8 - 6"5

4d 1 7 8

Notice the equilateral triangle 1A The pyramid

6

5 rotates around point 5 and its base 1 6 8.
8.

1 6

360 -10

1~ 1

8 4 375 126' '8 6 1' '4 7 2' '3 '5

=(3) (5) (186) (247)

2 2
f1 f3

2 2There are 8f 1f 3cycles.
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Types of circular substitutions or cycles made

with these rotations:

f8~ + f + 6f 2 + 6f 4 +f2 f2
1 2 4 2 8 1f 3

Total number of rotations performed:

1 + 3 + 6 + 8 = 24 rotations.

Without numerical calculations one can see that

there are 24 different positions (or rotations to be per-

formed) for the cube, by observing that there are six

faces any of which can be positioned at the top; and that

for each choice there are then four faces any of which can

* be positioned at the front.

f +9f4 +62+8f2 f2
Cycle index 1 2 4 + 63 8
for the cube 2

2. Pattern inventory. There are two variables in

this problem, where repeated selection of colors is allowed:

a. color x

b. color y
q P

Thus, the pattern inetr sfp (x q+yq
q
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Expanded cycle 8 223+3 2index for = (x+y) 8+9(x 2+y 2)+6(x 4+y4 ) 2+8(x+y) 2(x +y
inde for24

the cube

All possible combinations of colors represented in the

expanded cycle index are valid. As the problem only

requests the number of distinct ways of painting, thus,

colors x and y can be pondered equal 1 (both are equally

distributed in the whole tableau of different arrangements).

For x = y = 1,

28 + 9.24 + 6-2 2 + 8.22.22 

24 = 23 ways

After this problem has been already solved, the

reader should have noticed the practical use of the nota-

tion fP 3ust in order to represent and collect homogeneous
q

cycles after the rotations have been performed. By applying

this notation, a lot of repetitive and tedious calculations

can be saved, because the symbolism fP allows one to group
q

together all the homogeneous cycles that follow the same

structure, even though they have different contents. For

instance,

P0
mf p + nf p = (m+n)fp = Mf p

q q q q

Those M cycles, grouped together because of their

common structure, have different contents, which are

ignored at a first sight. But the application of the

pattern inventory to every term fP in the cycle index
q
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p returns its full sense to every singular cycle and to every

item, vertex, face, side, edge, variable, etc.

Problem No. 6. Given a regular tetrahedron and

four different colors a, b, c, and d calculate:

a. The number of different configurations that

can be obtained by painting the four vertices with the four

colors, with repeated selection.

b. The distribution of color a in the differ-

ent configurations obtained in 1.

1. Cycle index. No rotation. Initial arrangement.

Identity substitution. d

a

(ab c d 4
a bc d =(a b c d) =(a) (b) (c) (d) =f 1  b

±1200 rotations around lines connecting a vertex and the

center of its opposite face.

ddd

c b c \ a d~ (a c b) (d)ff

2f f
a 3 1

b.
Yb' a

a b cd 1 1
=(a bc) (d) =f f1b ca d31

c

As the same structure happens four times, considering the

four vertices on the top, 4 x 2f f1  8 f 1f 1
C,1 3
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180' rotations around lines connecting the midpoints of

d b
opposite edges,

1'/ I//"

a . . -- - -c c -

/ b "d

a b c d (a c) (b d) 2
c d a b ) = ( )b2

As the same structure happens three times, 3xf2 = 3f2 ,As the

thus,

4 1 1 f-223f

Cycle index fl + 8f1 f3 + 2 4 8ff3 + 3f 2

for regular = =

tetrahedron 1 + 8 + 3 12

The same result can be obtained observing that the four

faces can serve as the tetrahedron base, and that for each

base there are three possible edges at the front.

So, 4 x 3 = 12 different configurations.

There are four variables: a, b, c, d.

Pattern inventory fP (a + bq + +
q

Expanded cycle 2
index for _ (a+b+c+d) +8 (a+b+c+d) (a +b +c +d3) +3 (a +b +c +d
regular 12
tetrahedron

Weighting a = b = c = d = 1,
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number of different ways for painting the vertices of the

regular tetrahedron, with repeated selection =

,.1 (44+ 2) 1 432 - 3
1- (4 4+8.4-4+3.4 2 - (256+128+48)= 12

A36

2. Weighting a = a; b = c = d = 1, the pattern

inventory is fP = + 1 + 1 + i)p, and theq

Expanded (a+3) 4+8(a+3)(a 3+3)+3(a 2+3) 2
Cycle =12

Index

-(a 2+6a+9) 2+8(a 4+3a 3+3a+9)+3(a 4+6a 2+9)
12

-1 (a4 +12a 3 +36a 2 +18a 2+108a+81+8a 4+24a 3+24a

412

+72+3a 4+18a 2+27)

-. 12 (12a 4+36a 3+72a 2+132a+180)

4132

a + 3a 3 + 6a 2 + lla + 15.
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Distribution:

1 arrangement containing four vertices painted with a

3 arrangements containing three vertices painted with a

6 arrangements containing two vertices painted with a

11 arrangements containing one vertex painted with a

15 arrangements containing zero vertices painted with a

36 total arrangements, 21 of which (1+3+6+11) contain
color a.
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V. Conclusions and Recommendations
for Further Research

N Conclusions

The capital characteristics of the number applied

to a set of elements are two:

1. That number is independent of the order in

which the elements are taken into account;

2. That number is independent of the nature of

the elements it compiles.

But when combinatorics concepts are employed for

computing what number has to be assigned to a set of

5- elements, the first of these two characteristics could be

modified in the sense that the number to be given can be

dependent or independent of the elements' order. Such

distinction makes the difference between variations, where

order of the elements is relevant, and combinations, where

order is irrelevant.

Besides the sense of order as a variable for

computing the elements of a set, combinatorics can deal

with another variable: the possibility of selecting all the

elements in a repetitive manner. Such distinction makes

the difference between ordinary variations and combina-

tions versus variations and combinations with repeated

selection.
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Recall at this point that ordinary permutations are

a particular case of ordinary variations, and recall also

that permutations with repetition play a key role for

rejecting duplicate arrangements of elements.

Moreover, most of those calculations have only been

researched in one dimensional space, leaving an open field

for future studies. A modest attempt was made in two

dimensions (circular permutations) and three dimensions

(substitutions)

* It is important to remark here that equivalent

problems arrive to distinct solutions when they are solved

under different dimensional conditions. To greater degrees

of freedom, corresponds a more simple answer, and vice

versa. Thus, when the number of dimensions increases, the

number of solutions for any particular problem decreases.

For instance, compare the three distinct results obtained

when n different colored beads are arranged in one, two

or three dimensions:

1. Arrangements along a row, P =n! different
n

arrangements;

2. Arrangements around a circular table,

PC = n- (n-l)! different arrangements.n -

3. Arrangements made by stringing the beads into
PC

a necklace, 2n -(n-2l)! different arrangements.
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The conclusion goes against normal human intuition:

*n! >(n-i)! (ni)
2

one dimension Two dimensions Three dimensions

on the other hand, consider the basic alternatives

that could be present at solving any specific problem:

1. ordinary selection (variations, permutations,

combinations)

2. Repeated selection (variations, combinations)

3. Repetition (permutations)

No other research effort (as far as one knows)

has been conducted in order to solve problems where the

three alternatives are simultaneously presented. For

example, given an original set of m beads, in which some

of those beads are unique and, therefore, they only can be

used one time; some other beads are repeated a finite

number of times (e.g., ai times red, times green, ... ,

etc.) and they can be repeated that finite number as a

maximum; and the rest of the beads are repeated indefinitely

and can be used with no restriction. A question that could

well follow the former data could be: in how many different

ways could those beads be attached to the n vertices of a

regular polyhedron? Imagine the complexity of problems

5. of this nature, moreover in three dimensions, and even
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more if m > n, because the pattern inventory function

cannot be discerned when the variables do not obey the

* same law.

Nevertheless, a new approach for teaching combina-

torics has been developed by the present thesis effort as

a remedy to the fact that previous presentations leave a

great deal to be desired pedagogically, not only because

most textbooks use very difficult languages and notations

for beginners, but also because they do not place enough

emphasis on visualization and fail to show the relation-

ships between general and subordinate concepts. Thus, a

partial solution has been found for promoting meaningful

learning of combinatorial concepts, giving to them a touch

of freshness and relevance. It is true that one has not

been able to solve every facet of the problem; that would

require at least a lifetime of study and research, but it

has been demonstrated that it is solvable.

Recommendations for Further Research

One regrets the lack of time for continuing deeper

theoretical research through the fascinating world of

combinatorics. Far from being discouraged by this fact,

this research effort has opened the door to at least two

new research efforts:

1. Explore the characteristics and structure of

those problems already presented in the first part of this
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chapter, dealing with situations in two and three dimen-

sions where the possibility for the simultaneous occurrence

-~ of ordinary selection, repeated selection and repetition

exists.

2. Investigate ways that computer graphics and

- expert systems can be used to facilitate the accession and

employment of the conceptual map presented in Chapter IV

in order to enhance the visualization and computational

capabilities of the combinatorial analyst.

Finally, one hopes that this modest attempt to

advance the theory and pedagogy of combinatorics has at

least made some contribution to the science.
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